Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diesel exhaust inhalation stresses your brain

11.03.2008
If the smell of diesel exhaust isn't enough to make you avoid getting a lungful, new research now shows that even a short exposure to the fumes can affect your brain. A study published in the open access journal Particle and Fibre Toxicology reveals that an hour of sniffing exhaust induces a stress response in the brain's activity.

Previous studies have already suggested that very small particles, called nanoparticles, breathed in from polluted air can end up in the brain. But this is the first time that scientists have demonstrated that inhalation actually alters brain activity.

Ten volunteers spent one hour in a room filled with either clean air or exhaust from a diesel engine. They were wired up to an electroencephalograph (EEG), a machine that records the electrical signals of the brain, and their brain waves were monitored during the exposure period and for one hour after they left the room.

The researchers found that after about 30 minutes the diesel exhaust began to affect brain activity. The EEG data suggested that the brain displayed a stress response, indicative of changed information processing in the brain cortex, which continued to increase even after the subjects had left the exposure chamber.

The concentration of diesel exhaust that the subjects breathed was set to the highest level that people might encounter in the environment or at work, for example on a busy road or in a garage.

Lead researcher Paul Borm from Zuyd University in The Netherlands said: “We believe our findings are due to an effect nanoparticles or ‘soot’ particles that are major component of diesel exhaust. These may penetrate to the brain and affect brain function. We can only speculate what these effects may mean for the chronic exposure to air pollution encountered in busy cities where the levels of such soot particles can be very high.”

One link to understanding the mechanism of this effect is that oxidative stress is one consequence of particles depositing in tissue and oxidative stress has also been implicated in degenerative brain diseases such as Parkinson’s and Alzheimer’s disease . “It is conceivable that the long-term effects of exposure to traffic nanoparticles may interfere with normal brain function and information processing,” noted Borm. “Further studies are necessary to explore this effect, and to assess the relationship between the amount of exposure to particles and the brain's response and, and investigate the clinical implications of these novel findings.”

Studies that expose volunteers to potential toxins or require invasive techniques are limited for ethical reasons. Borm is currently conducting experiments where volunteers inhale artificially generated nanoparticles that are free from the other chemicals that are generated, along with the nanoparticles in diesel exhaust.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>