Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diesel exhaust inhalation stresses your brain

11.03.2008
If the smell of diesel exhaust isn't enough to make you avoid getting a lungful, new research now shows that even a short exposure to the fumes can affect your brain. A study published in the open access journal Particle and Fibre Toxicology reveals that an hour of sniffing exhaust induces a stress response in the brain's activity.

Previous studies have already suggested that very small particles, called nanoparticles, breathed in from polluted air can end up in the brain. But this is the first time that scientists have demonstrated that inhalation actually alters brain activity.

Ten volunteers spent one hour in a room filled with either clean air or exhaust from a diesel engine. They were wired up to an electroencephalograph (EEG), a machine that records the electrical signals of the brain, and their brain waves were monitored during the exposure period and for one hour after they left the room.

The researchers found that after about 30 minutes the diesel exhaust began to affect brain activity. The EEG data suggested that the brain displayed a stress response, indicative of changed information processing in the brain cortex, which continued to increase even after the subjects had left the exposure chamber.

The concentration of diesel exhaust that the subjects breathed was set to the highest level that people might encounter in the environment or at work, for example on a busy road or in a garage.

Lead researcher Paul Borm from Zuyd University in The Netherlands said: “We believe our findings are due to an effect nanoparticles or ‘soot’ particles that are major component of diesel exhaust. These may penetrate to the brain and affect brain function. We can only speculate what these effects may mean for the chronic exposure to air pollution encountered in busy cities where the levels of such soot particles can be very high.”

One link to understanding the mechanism of this effect is that oxidative stress is one consequence of particles depositing in tissue and oxidative stress has also been implicated in degenerative brain diseases such as Parkinson’s and Alzheimer’s disease . “It is conceivable that the long-term effects of exposure to traffic nanoparticles may interfere with normal brain function and information processing,” noted Borm. “Further studies are necessary to explore this effect, and to assess the relationship between the amount of exposure to particles and the brain's response and, and investigate the clinical implications of these novel findings.”

Studies that expose volunteers to potential toxins or require invasive techniques are limited for ethical reasons. Borm is currently conducting experiments where volunteers inhale artificially generated nanoparticles that are free from the other chemicals that are generated, along with the nanoparticles in diesel exhaust.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>