Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapy of wounds with water-filtered infrared-A (wIRA)

06.03.2008
Water-filtered infrared-A (wIRA) as a special form of heat radiation can advance wound healing or improve an impaired wound healing process both in acute and in chronic wounds and can especially enable wound healing in non-healing chronic wounds.

wIRA can considerably alleviate the pain and diminish an elevated wound exudation and inflammation and can show positive immunomodulatory effects. wIRA increases temperature, oxygen partial pressure, and perfusion in the tissue.

In three reviews in the medical e-Journal "GMS Krankenhaushygiene Interdisziplinär" within "German Medical Science" of the Association of the Scientific Medical Societies in Germany (AWMF) working mechanisms of wIRA and results of 6 scientific studies with wIRA are discussed.

The experience of the pleasant heat of the sun in moderate climatic zones arises from the filtering of the heat radiation of the sun by water vapor in the atmosphere of the earth. The filter effect of water decreases those parts of infrared radiation (most parts of infrared-B and -C and the absorption bands of water within infrared-A), which would cause - by reacting with water molecules in the skin - only an undesired thermal load to the surface of the skin. Technically water-filtered infrared-A (wIRA) is produced in special radiators, whose full spectrum of radiation of a halogen bulb is passed through a cuvette, containing water, which absorbs or decreases the described undesired wavelengths of the infrared radiation.

Within infrared the remaining wIRA (within 780-1400 nm) mainly consists of radiation with good penetration properties into tissue and therefore allows - compared to unfiltered heat radiation - a multiple energy transfer into tissue without irritating the skin, similar to the sun's heat radiation in moderate climatic zones. Typical wIRA radiators emit no ultraviolet (UV) radiation and nearly no infrared-B and -C radiation and the amount of infrared-A radiation in relation to the amount of visible light (380-780 nm) is emphasized.

Wound healing and infection defense depend decisively on a sufficient supply with energy and oxygen. The central portion of chronic wounds is often clearly hypoxic and relatively hypothermic, representing a deficient energy supply of the tissue, which impedes wound healing or even makes it impossible. wIRA produces a therapeutically usable field of heat in the tissue and increases tissue temperature, tissue oxygen partial pressure, and tissue perfusion. These three factors are vital for a sufficient tissue supply with energy and oxygen. The improvement of both the energy supply per time (increase of metabolic rate) and the oxygen supply can be one explanation for the good clinical effect of wIRA on wounds and wound infections. In addition wIRA has non-thermal and non-thermic effects, which are based on putting direct stimuli on cells and cellular structures.

Several wound studies showed under therapy with wIRA a clear reduction of pain and of the required dose of pain medication and an improved wound healing process with a tendency towards lower infection rates and a shorter hospital stay after abdominal surgery (study of the University Heidelberg/Germany) and an accelerated wound healing of severely burned children (study of the children's hospital in Kassel/Germany). Complete healings of chronic non-healing wounds were achieved (studies in Basel/Switzerland and of the University Freiburg/Germany and of the University Tromsø/Norway together with the hospital in Hillerød/Denmark). At the beginning in the infrared thermography clearly recognizable temperature differences between ulcer base and ulcer wall were mostly balanced until complete healing.

wIRA can be used for the treatment of wound seromas and for prevention and therapy of decubital ulcers.

wIRA is contact-free, easily applied, without discomfort to the patient, with absent consumption of material and with a good effect in the depth. The irradiation of the typically uncovered wound is carried out with a wIRA radiator.

Publications:

Hoffmann G. Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing [review]. Grundlagen und Wirkprinzipien von wassergefiltertem Infrarot A (wIRA) in Bezug zur Wundheilung [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc54. Online available from:
http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000087.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2007-2/dgkh000087.shtml (shtml).
Hartel M, Illing P, Mercer JB, Lademann J, Daeschlein G, Hoffmann G. Therapy of acute wounds with water-filtered infrared-A (wIRA) [review]. Therapie akuter Wunden mit wassergefiltertem Infrarot A (wIRA) [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc53. Online available from:
http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000086.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2007-2/dgkh000086.shtml (shtml).
von Felbert V, Schumann H, Mercer JB, Strasser W, Daeschlein G, Hoffmann G. Therapy of chronic wounds with water-filtered infrared-A (wIRA) [review]. Therapie chronischer Wunden mit wassergefiltertem Infrarot A (wIRA) [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc52. Online available from:
http://www.egms.de/pdf/journals/dgkh/2008-2/dgkh000085.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2008-2/dgkh000085.shtml (shtml).
Contact address for wIRA for chronic wounds:
Dr. med. Hauke Schumann
University Medical Center Freiburg
Department of Dermatology
Hauptstrasse 7
D-79104 Freiburg
Germany
Tel: 0049-761-270-6701
Fax: 0049-761-270-6829
Hauke.Schumann@uniklinik-freiburg.de
Contact address for wIRA for acute wounds:
PD Dr. med. Mark Hartel
Technical University Munich
Department of Surgery
Ismaninger Strasse 22
D-81675 Munich
Germany
Tel: 0049-89-4140-5099
Mark.Hartel@chir.med.tu-muenchen.de
Contact address for wIRA for burns:
Dr. med. Peter Illing
Children's Hospital Park Schönfeld
Department of Pediatric Surgery
Frankfurter Strasse 167
D-34121 Kassel
Germany
Tel: 0049-561-9285-124
Fax: 0049-561-9285-230
P.Illing@park-schoenfeld.de

Wolfgang Müller | idw
Further information:
http://awmf.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>