Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapy of wounds with water-filtered infrared-A (wIRA)

06.03.2008
Water-filtered infrared-A (wIRA) as a special form of heat radiation can advance wound healing or improve an impaired wound healing process both in acute and in chronic wounds and can especially enable wound healing in non-healing chronic wounds.

wIRA can considerably alleviate the pain and diminish an elevated wound exudation and inflammation and can show positive immunomodulatory effects. wIRA increases temperature, oxygen partial pressure, and perfusion in the tissue.

In three reviews in the medical e-Journal "GMS Krankenhaushygiene Interdisziplinär" within "German Medical Science" of the Association of the Scientific Medical Societies in Germany (AWMF) working mechanisms of wIRA and results of 6 scientific studies with wIRA are discussed.

The experience of the pleasant heat of the sun in moderate climatic zones arises from the filtering of the heat radiation of the sun by water vapor in the atmosphere of the earth. The filter effect of water decreases those parts of infrared radiation (most parts of infrared-B and -C and the absorption bands of water within infrared-A), which would cause - by reacting with water molecules in the skin - only an undesired thermal load to the surface of the skin. Technically water-filtered infrared-A (wIRA) is produced in special radiators, whose full spectrum of radiation of a halogen bulb is passed through a cuvette, containing water, which absorbs or decreases the described undesired wavelengths of the infrared radiation.

Within infrared the remaining wIRA (within 780-1400 nm) mainly consists of radiation with good penetration properties into tissue and therefore allows - compared to unfiltered heat radiation - a multiple energy transfer into tissue without irritating the skin, similar to the sun's heat radiation in moderate climatic zones. Typical wIRA radiators emit no ultraviolet (UV) radiation and nearly no infrared-B and -C radiation and the amount of infrared-A radiation in relation to the amount of visible light (380-780 nm) is emphasized.

Wound healing and infection defense depend decisively on a sufficient supply with energy and oxygen. The central portion of chronic wounds is often clearly hypoxic and relatively hypothermic, representing a deficient energy supply of the tissue, which impedes wound healing or even makes it impossible. wIRA produces a therapeutically usable field of heat in the tissue and increases tissue temperature, tissue oxygen partial pressure, and tissue perfusion. These three factors are vital for a sufficient tissue supply with energy and oxygen. The improvement of both the energy supply per time (increase of metabolic rate) and the oxygen supply can be one explanation for the good clinical effect of wIRA on wounds and wound infections. In addition wIRA has non-thermal and non-thermic effects, which are based on putting direct stimuli on cells and cellular structures.

Several wound studies showed under therapy with wIRA a clear reduction of pain and of the required dose of pain medication and an improved wound healing process with a tendency towards lower infection rates and a shorter hospital stay after abdominal surgery (study of the University Heidelberg/Germany) and an accelerated wound healing of severely burned children (study of the children's hospital in Kassel/Germany). Complete healings of chronic non-healing wounds were achieved (studies in Basel/Switzerland and of the University Freiburg/Germany and of the University Tromsø/Norway together with the hospital in Hillerød/Denmark). At the beginning in the infrared thermography clearly recognizable temperature differences between ulcer base and ulcer wall were mostly balanced until complete healing.

wIRA can be used for the treatment of wound seromas and for prevention and therapy of decubital ulcers.

wIRA is contact-free, easily applied, without discomfort to the patient, with absent consumption of material and with a good effect in the depth. The irradiation of the typically uncovered wound is carried out with a wIRA radiator.

Publications:

Hoffmann G. Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing [review]. Grundlagen und Wirkprinzipien von wassergefiltertem Infrarot A (wIRA) in Bezug zur Wundheilung [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc54. Online available from:
http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000087.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2007-2/dgkh000087.shtml (shtml).
Hartel M, Illing P, Mercer JB, Lademann J, Daeschlein G, Hoffmann G. Therapy of acute wounds with water-filtered infrared-A (wIRA) [review]. Therapie akuter Wunden mit wassergefiltertem Infrarot A (wIRA) [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc53. Online available from:
http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000086.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2007-2/dgkh000086.shtml (shtml).
von Felbert V, Schumann H, Mercer JB, Strasser W, Daeschlein G, Hoffmann G. Therapy of chronic wounds with water-filtered infrared-A (wIRA) [review]. Therapie chronischer Wunden mit wassergefiltertem Infrarot A (wIRA) [Übersichtsarbeit]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc52. Online available from:
http://www.egms.de/pdf/journals/dgkh/2008-2/dgkh000085.pdf (PDF) and
http://www.egms.de/en/journals/dgkh/2008-2/dgkh000085.shtml (shtml).
Contact address for wIRA for chronic wounds:
Dr. med. Hauke Schumann
University Medical Center Freiburg
Department of Dermatology
Hauptstrasse 7
D-79104 Freiburg
Germany
Tel: 0049-761-270-6701
Fax: 0049-761-270-6829
Hauke.Schumann@uniklinik-freiburg.de
Contact address for wIRA for acute wounds:
PD Dr. med. Mark Hartel
Technical University Munich
Department of Surgery
Ismaninger Strasse 22
D-81675 Munich
Germany
Tel: 0049-89-4140-5099
Mark.Hartel@chir.med.tu-muenchen.de
Contact address for wIRA for burns:
Dr. med. Peter Illing
Children's Hospital Park Schönfeld
Department of Pediatric Surgery
Frankfurter Strasse 167
D-34121 Kassel
Germany
Tel: 0049-561-9285-124
Fax: 0049-561-9285-230
P.Illing@park-schoenfeld.de

Wolfgang Müller | idw
Further information:
http://awmf.org

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>