Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Screening the herbal pharmacy

06.03.2008
Curing cancer with natural products – a case for shamans and herb women? Not at all, for many chemotherapies to fight cancer applied in modern medicine are natural products or were developed on the basis of natural substances.

Thus, taxanes used in prostate and breast cancer treatment are made from yew trees. The popular periwinkle plant, which grows along the ground of many front yards, is the source of vinca alkaloids that are effective, for example, against malignant lymphomas. The modern anti-cancer drugs topotecan and irinotecan are derived from a constituent of the Chinese Happy Tree.

Looking for new compounds, doctors and scientists are increasingly focusing on substances from plants used in traditional medicine. About three quarters of the natural pharmaceutical compounds commonly used today are derived from plants of the traditional medicine of the people in various parts of the world. The chances of finding new substances with interesting working profiles in traditional medicinal plants are better than in common-or-garden botany.

In his search for active ingredients, Professor Dr. Thomas Efferth of the DKFZ has been concentrating on herbal remedies from traditional Chinese medicine with particularly well documented application range. Working together with colleagues in Mainz and Düsseldorf, Germany, Graz, Austria and Kunming in China, he launched a systematic compound search in 76 Chinese medicinal plants that are believed to be effective against malignant tumors and other growths. First results of this study have now been published.

Extracts from 18 of the plants under investigation were found to substantially suppress the growth of a cancer cell line in the culture dish. “With this success rate of about 24 percent, we are way above the results that could be expected from searching through large chemical substance libraries,” Thomas Efferth explains.

The scientists proceeded to chemically separate, step by step, all active extracts, tracing the active component after each separation step by cell tests. The chemical structure of the compounds is analyzed using nuclear magnetic resonance and mass spectroscopy. “We are combining natural substance research with advanced analytical and molecular-biological methods”, Efferth explains. “Plant constituents that seem particularly promising are immediately subjected to further tests.” Such constituents include, for example, substances derived from the Rangoon Creeper, an ornamental plant with red flowers, or from Red-Root Sage. The latter contains three ingredients with powerful anti-tumor activity. The substances were found to suppress the growth of a specific tumor cell line that is particularly resistant to many commonly used cytotoxins due to overproduction of a transport protein in the cell wall. In contrast, a whole range of standard anti-cancer drugs fail to be effective against this cell.

„We can expect to find many interesting, yet unknown working mechanisms among the chemically highly diverse natural substances. Currently, we are aligning the effectiveness of the substances on 60 different cancer cell lines with the gene activity profiles of these cells. Thus, we can determine the exact gene products that are the cellular targets of our compounds. Thereby, it may be possible to discover whole new Achilles’ heels of the cancer cell,” said Efferth describing the next steps.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>