Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic engineering could salvage once-promising anti-cancer agents

11.06.2002


A group of anti-cancer agents that once produced dismal results in clinical trials could once again be a promising tool in fighting the deadly disease, thanks to research by a team of chemists at the University of Washington and in Germany.



The agents, called maytansinoids, were first discovered in the 1970s when scientists looked for tumor inhibitors in a rare Ethiopian plant. The same group of maytansinoids was later isolated from a new bacteria species. The compounds held great promise because of their exceptional potency, and early tests indicated they were effective against some tumors and leukemia lines.

But the compounds were difficult to come by in quantities large enough to manufacture drugs and, when potential treatments were developed, they proved too strong when tested in clinical trials.


"These compounds were too potent. They were toxic to patients," said Tin-Wein Yu, a UW research assistant professor of chemistry. "We thought if we could modify the chemical structure to make the agents more appropriate for cancer patients, that would be beneficial. And we could use the same strategy to ease the side effects."

UW researchers headed by Heinz Floss, an emeritus chemistry professor, teamed with researchers from Rheinische Wilhems-Universität in Bonn, Germany, to develop ways of modifying genes that create maytansinoids and then produce cancer treatments that are more effective against tumors and better tolerated by patients.

Their efforts essentially relied on using the modified genes to produce the anti-cancer agent. The first step was to locate the genes that control maytansinoid formation and clone them. They first gained access to genes that control maytansinoid production, then altered the maytansinoid structure at the genetic level.

"If you can manipulate the production genes, it makes the process much easier," said Yu, who is the lead author of a paper describing the work in the June 11 issue of the Proceedings of the National Academies of Science.

To clone the genes, the researchers snipped the genome of the bacteria (Actinosynnema pretiosum) into small bits to create a genomic library. They used a gene that already had been cloned from another microorganism (Amycolatopsis mediterranei) as a reference to screen the library and find the genes needed for maytansinoid construction. Having access to the genes that control the formation of maytansinoids allows scientists to manipulate the structure of the anti-cancer agent at the DNA level.

The work, for which the UW has applied for a patent, allows for a detailed analysis of maytansinoid formation at both the genetic and biochemical levels. It also sets the stage to modify maytansinoids through genetic engineering, so they are less toxic to humans, are more effective against cancer and bond easily with delivery agents.

Several companies are in discussions about the possibility of using the research to combine maytansinoids with antibodies that target tumors. The antibodies would search out specific cancer antigens attach only to cancer cells, Yu said. The maytansinoids then can enter the cancer cells and destroy them without damaging surrounding healthy tissue.

"It is a warhead strategy," he said.

The work has provided researchers with a number of options other than simply deciphering the biosynthesis of pre-existing compounds, Yu said. Manipulating the structure, he said, ultimately could lead to development of more effective cancer drugs.



The research was funded by grants from the National Institutes of Health, Deutsche Forschungsgemeinschaft (Germany’s central public funding organization for academic research), the Fonds der Chemischen Industrie in Germany and the North Atlantic Treaty Organization.

For more information, contact Yu at (206) 543-3791 or yu@u.washington.edu

Vince Stricherz | EurekAlert

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>