Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Grants European Project for the Early Detection of Adverse Drugs Events

06.03.2008
Before launching a new drug to the market, it is tested on thousands of people, but adverse reactions (side effects) may not be detected until many more patients have used the drug. Once the drug is on the market, clinicians are responsible for recognizing and reporting suspected side effects, which are collected in so-called spontaneous reporting systems. However, a number of recent, highly publicized drug safety issues showed that adverse effects of drugs may be detected too late, when millions of patients have already been exposed.

The recently approved ALERT project aims to develop an innovative computerized system to detect adverse drug reactions (ADRs) better and faster than spontaneous reporting systems. To achieve this objective, ALERT will exploit clinical data from electronic healthcare records (EHRs) of over 30 million patients from several European countries (The Netherlands, Denmark, United Kingdom, Spain and Italy).

ALERT will use a variety of text mining, epidemiological and other computational techniques to analyze the EHRs in order to detect ‘signals’ (combinations of drugs and suspected adverse events that warrant further investigation).

In ALERT, special emphasis will be placed on the detection of ADRs in children. EHRs from the collaborating European countries all include data on the paediatric population. For children, monitoring of adverse events is especially mandated because relatively little is known about ADRs in children. ALERT will therefore pay particular attention to the additional requirements posed by the paediatric population.

One of the major research issues in ALERT is to discriminate between signals that indeed point to an ADR, and spurious signals. Spurious signals may create unrest and uncertainty in both patients and physicians and may even result in removal of a useful drug from the market. Also from a commercial and regulatory perspective the cost of a false-positive signal is significant.

To discriminate between true signals and spurious signals, in ALERT a possible biological explanation is sought for each signal. This process of signal substantiation requires that the signal be placed in the context of our current understanding of possible biological mechanisms. ALERT will use to the maximum the currently available databases that contain information about these biological mechanisms and augment that understanding with in silico models and simulations of the behaviour of drug and biological systems. ALERT will also rely on experimental screening to test the causal hypothesis generated during the substantiation of signals.

Monitoring of EHRs to detect signals and the subsequent mechanistic substantiation of these signals is a continuous process. As more patient data become available and medical, biological and molecular knowledge expands, previous conclusions will need to be revisited. In order to deal with this constant process of revision, ALERT will focus on automated procedures as much as possible.

ALERT will be carried out by an interdisciplinary team of researchers who share the ultimate objective to demonstrate that an earlier detection of adverse side effects of drugs is possible by using modern biomedical informatics technologies to efficiently exploit both the massive amounts of available EHRs, and the ever-increasing biological and molecular knowledge. The project should demonstrate that scientific and clinical evidence can quickly and directly be translated into patient safety and, thus, health benefit.

The ALERT project (full title: “Early Detection of Adverse Drug Events by Integrative Mining of Clinical Records and Biomedical Knowledge”) is funded with 4.5 million Euro granted by the European Commission in the recently initiated 7th Framework Programme. ALERT will be coordinated by Professor dr. Johan van der Lei of Erasmus University Medical Center (Netherlands), and carried out by a consortium of 18 leading European research institutions.

Nathalie Villahoz | alfa
Further information:
http://www.imim.es

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>