Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Grants European Project for the Early Detection of Adverse Drugs Events

06.03.2008
Before launching a new drug to the market, it is tested on thousands of people, but adverse reactions (side effects) may not be detected until many more patients have used the drug. Once the drug is on the market, clinicians are responsible for recognizing and reporting suspected side effects, which are collected in so-called spontaneous reporting systems. However, a number of recent, highly publicized drug safety issues showed that adverse effects of drugs may be detected too late, when millions of patients have already been exposed.

The recently approved ALERT project aims to develop an innovative computerized system to detect adverse drug reactions (ADRs) better and faster than spontaneous reporting systems. To achieve this objective, ALERT will exploit clinical data from electronic healthcare records (EHRs) of over 30 million patients from several European countries (The Netherlands, Denmark, United Kingdom, Spain and Italy).

ALERT will use a variety of text mining, epidemiological and other computational techniques to analyze the EHRs in order to detect ‘signals’ (combinations of drugs and suspected adverse events that warrant further investigation).

In ALERT, special emphasis will be placed on the detection of ADRs in children. EHRs from the collaborating European countries all include data on the paediatric population. For children, monitoring of adverse events is especially mandated because relatively little is known about ADRs in children. ALERT will therefore pay particular attention to the additional requirements posed by the paediatric population.

One of the major research issues in ALERT is to discriminate between signals that indeed point to an ADR, and spurious signals. Spurious signals may create unrest and uncertainty in both patients and physicians and may even result in removal of a useful drug from the market. Also from a commercial and regulatory perspective the cost of a false-positive signal is significant.

To discriminate between true signals and spurious signals, in ALERT a possible biological explanation is sought for each signal. This process of signal substantiation requires that the signal be placed in the context of our current understanding of possible biological mechanisms. ALERT will use to the maximum the currently available databases that contain information about these biological mechanisms and augment that understanding with in silico models and simulations of the behaviour of drug and biological systems. ALERT will also rely on experimental screening to test the causal hypothesis generated during the substantiation of signals.

Monitoring of EHRs to detect signals and the subsequent mechanistic substantiation of these signals is a continuous process. As more patient data become available and medical, biological and molecular knowledge expands, previous conclusions will need to be revisited. In order to deal with this constant process of revision, ALERT will focus on automated procedures as much as possible.

ALERT will be carried out by an interdisciplinary team of researchers who share the ultimate objective to demonstrate that an earlier detection of adverse side effects of drugs is possible by using modern biomedical informatics technologies to efficiently exploit both the massive amounts of available EHRs, and the ever-increasing biological and molecular knowledge. The project should demonstrate that scientific and clinical evidence can quickly and directly be translated into patient safety and, thus, health benefit.

The ALERT project (full title: “Early Detection of Adverse Drug Events by Integrative Mining of Clinical Records and Biomedical Knowledge”) is funded with 4.5 million Euro granted by the European Commission in the recently initiated 7th Framework Programme. ALERT will be coordinated by Professor dr. Johan van der Lei of Erasmus University Medical Center (Netherlands), and carried out by a consortium of 18 leading European research institutions.

Nathalie Villahoz | alfa
Further information:
http://www.imim.es

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>