Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research from the University of Bristol aims to eliminate Streptococcus infections

06.03.2008
Professor Howard Jenkinson in the Department of Oral & Dental Science (Dental School) at the University of Bristol has been awarded a grant of £285,000 from The Wellcome Trust to research ways to combat diseases caused by Streptococcus bacteria.

Familiar to those who suffer from ‘strep’ throat, Streptococcus are the most common bacteria in the human mouth and throat. They are linked to a number of health problems, some mild, some life-threatening, ranging from tooth and gum disease to meningitis, pneumonia, endocarditis (inflammation of the inner layer of the heart) and necrotizing fasciitis (‘flesh-eating disease’).

Streptococcus are potent bacteria which are becoming increasingly resistant to treatment by antibiotics. The rate of severe invasive Streptococcus infections is about 60 per 100,000.

The bacteria cause disease in the body by first attaching to tissues. By looking at how this happens, Professor Jenkinson and his team will be able to develop new ways to block the bacteria. One goal is to reduce the rates at which disease-causing Streptococcus are transferred between humans.

This could be achieved by developing user-friendly vaccines or natural biological products, which can be taken by mouth, to eliminate the harmful bacteria. This approach lessens antibiotic usage and would significantly decrease infection rates in those most susceptible e.g. children, expectant mothers and the elderly.

Professor Jenkinson says, ‘Streptococcus bacteria are amongst the most commonly encountered in infections, and for the most part we depend totally on antibiotics to fight them. Our research will help develop new infection-control methods that do not rely on conventional antibiotics, and will also help identify people who are at higher risk of infections.’

The research will look at the interactions between a protein called AgI/II, which is found on the surface of Streptococcus bacteria, and a protein called gp340, which is found on teeth, in saliva and in airways.

The team will measure how ‘sticky’ the Streptococcus bacteria proteins are as they attach to gp340 on tissue surfaces. By pinpointing the sticky parts of the protein, the team will be able to identify which are responsible for streptococci invading and attacking the body. The research will look at how to block this process and thus develop new ways to prevent bacterial infection.

The study involves Drs Michele Barbour, Linda Franklin and Sarah Maddocks, also from the Department of Oral & Dental Science; Dr Aras Kadioglu, University of Leicester and Dr Nicklas Strömberg, Umeå University. The first results are due to be presented internationally in June 2008.

Dara O'Hare | alfa
Further information:
http://www.bristol.ac.uk
http://www.bris.ac.uk/news/2008/12017945171.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>