Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research from the University of Bristol aims to eliminate Streptococcus infections

06.03.2008
Professor Howard Jenkinson in the Department of Oral & Dental Science (Dental School) at the University of Bristol has been awarded a grant of £285,000 from The Wellcome Trust to research ways to combat diseases caused by Streptococcus bacteria.

Familiar to those who suffer from ‘strep’ throat, Streptococcus are the most common bacteria in the human mouth and throat. They are linked to a number of health problems, some mild, some life-threatening, ranging from tooth and gum disease to meningitis, pneumonia, endocarditis (inflammation of the inner layer of the heart) and necrotizing fasciitis (‘flesh-eating disease’).

Streptococcus are potent bacteria which are becoming increasingly resistant to treatment by antibiotics. The rate of severe invasive Streptococcus infections is about 60 per 100,000.

The bacteria cause disease in the body by first attaching to tissues. By looking at how this happens, Professor Jenkinson and his team will be able to develop new ways to block the bacteria. One goal is to reduce the rates at which disease-causing Streptococcus are transferred between humans.

This could be achieved by developing user-friendly vaccines or natural biological products, which can be taken by mouth, to eliminate the harmful bacteria. This approach lessens antibiotic usage and would significantly decrease infection rates in those most susceptible e.g. children, expectant mothers and the elderly.

Professor Jenkinson says, ‘Streptococcus bacteria are amongst the most commonly encountered in infections, and for the most part we depend totally on antibiotics to fight them. Our research will help develop new infection-control methods that do not rely on conventional antibiotics, and will also help identify people who are at higher risk of infections.’

The research will look at the interactions between a protein called AgI/II, which is found on the surface of Streptococcus bacteria, and a protein called gp340, which is found on teeth, in saliva and in airways.

The team will measure how ‘sticky’ the Streptococcus bacteria proteins are as they attach to gp340 on tissue surfaces. By pinpointing the sticky parts of the protein, the team will be able to identify which are responsible for streptococci invading and attacking the body. The research will look at how to block this process and thus develop new ways to prevent bacterial infection.

The study involves Drs Michele Barbour, Linda Franklin and Sarah Maddocks, also from the Department of Oral & Dental Science; Dr Aras Kadioglu, University of Leicester and Dr Nicklas Strömberg, Umeå University. The first results are due to be presented internationally in June 2008.

Dara O'Hare | alfa
Further information:
http://www.bristol.ac.uk
http://www.bris.ac.uk/news/2008/12017945171.html

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>