Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain chemistry ties anxiety and alcoholism

Doctors may one day be able to control alcohol addiction by manipulating the molecular events in the brain that underlie anxiety associated with alcohol withdrawal, researchers at the University of Illinois at Chicago College of Medicine and the Jesse Brown VA Medical Center report in the March 5 issue of the Journal of Neuroscience.

"The association of anxiety with increased alcohol use is a key factor in the initiation and maintenance of alcohol addition," says Dr. Subhash Pandey, UIC professor of psychiatry and director of neuroscience alcoholism research, the lead author of the study.

Previous research has shown that people with inherently high levels of anxiety are at an increased risk of becoming alcoholics. In addition, withdrawal of alcohol in chronic users is often accompanied by extreme anxiety.

"Alcoholics may feel a need to continue to drink alcohol in an attempt to self-medicate to reduce their anxiety and other unpleasant withdrawal symptoms," said Pandey.

Pandey and his colleagues have discovered the molecular basis for the link between anxiety and alcohol addiction, which may help in identifying new therapeutic strategies for the treatment of alcohol addiction.

The researchers found that a protein within neurons in the amygdala -- the area of the brain associated with emotion and anxiety -- controls the development of alcohol withdrawal symptoms and drinking behaviors in laboratory animals by changing the shape of the neurons. This change in shape affects the communication between neurons, leading to changes in behavior.

Neurons communicate by sending signals through branches called dendritic spines. The researchers found that short-term alcohol exposure increased the number of dendritic spines in certain regions of the amygdala, producing anti-anxiety effects. Alcohol-dependent animals eventually developed a tolerance to the anxiety-lowering effects of alcohol.

The researchers traced the anti-anxiety effect to the production of a particular protein, Arc, in response to a nerve growth factor called BDNF that is stimulated by alcohol exposure. BDNF is vital in the functioning and maintenance of neurons.

When alcohol was withheld from animals that had been chronically exposed, they developed high anxiety. Levels of BDNF and Arc -- and the number of dendritic spines -- were decreased in the amygdala. But the researchers were able to eliminate the anxiety in the alcohol-dependent animals by restoring BDNF and Arc to normal levels.

Pandey suggested that an initial easing of anxiety may encourage people to begin to use alcohol, while for chronic users, a lack of alcohol provokes high anxiety, creating a need to continue drinking to feel normal.

The researchers blocked Arc production in normal rats by injecting a complementary sequence to Arc gene DNA into the central amygdala. They found that when levels of Arc in the central amygdala were lowered, the spines decreased and anxiety and alcohol consumption increased. When levels of Arc were returned to normal three days post-injection, anxiety and alcohol consumption also returned to normal. In a previous study, researchers found that lowering BDNF in amygdala promoted anxiety and alcohol drinking.

"This is the first direct evidence of the molecular processes occurring in the neurons that is responsible for the co-morbidity of anxiety and alcoholism, which we believe plays a major role in the addictive nature of alcohol," said Pandey.

"This offers the possibility of new therapeutic target -- BDNF-Arc signaling and associated dendritic spines in the amygdala -- or new drug development."

"These observations by Dr. Pandey's research group provide an insight into the link between alcohol and anxiety and could be used to identify new targets for developing medications that alleviate withdrawal-induced anxiety and potentially modify a motivation for drinking," said Antonio Noronha, director of neuroscience and behavior research at the National Institute on Alcohol Abuse and Alcoholism.

Jeanne Galatzer-Levy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>