Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain chemistry ties anxiety and alcoholism

05.03.2008
Doctors may one day be able to control alcohol addiction by manipulating the molecular events in the brain that underlie anxiety associated with alcohol withdrawal, researchers at the University of Illinois at Chicago College of Medicine and the Jesse Brown VA Medical Center report in the March 5 issue of the Journal of Neuroscience.

"The association of anxiety with increased alcohol use is a key factor in the initiation and maintenance of alcohol addition," says Dr. Subhash Pandey, UIC professor of psychiatry and director of neuroscience alcoholism research, the lead author of the study.

Previous research has shown that people with inherently high levels of anxiety are at an increased risk of becoming alcoholics. In addition, withdrawal of alcohol in chronic users is often accompanied by extreme anxiety.

"Alcoholics may feel a need to continue to drink alcohol in an attempt to self-medicate to reduce their anxiety and other unpleasant withdrawal symptoms," said Pandey.

Pandey and his colleagues have discovered the molecular basis for the link between anxiety and alcohol addiction, which may help in identifying new therapeutic strategies for the treatment of alcohol addiction.

The researchers found that a protein within neurons in the amygdala -- the area of the brain associated with emotion and anxiety -- controls the development of alcohol withdrawal symptoms and drinking behaviors in laboratory animals by changing the shape of the neurons. This change in shape affects the communication between neurons, leading to changes in behavior.

Neurons communicate by sending signals through branches called dendritic spines. The researchers found that short-term alcohol exposure increased the number of dendritic spines in certain regions of the amygdala, producing anti-anxiety effects. Alcohol-dependent animals eventually developed a tolerance to the anxiety-lowering effects of alcohol.

The researchers traced the anti-anxiety effect to the production of a particular protein, Arc, in response to a nerve growth factor called BDNF that is stimulated by alcohol exposure. BDNF is vital in the functioning and maintenance of neurons.

When alcohol was withheld from animals that had been chronically exposed, they developed high anxiety. Levels of BDNF and Arc -- and the number of dendritic spines -- were decreased in the amygdala. But the researchers were able to eliminate the anxiety in the alcohol-dependent animals by restoring BDNF and Arc to normal levels.

Pandey suggested that an initial easing of anxiety may encourage people to begin to use alcohol, while for chronic users, a lack of alcohol provokes high anxiety, creating a need to continue drinking to feel normal.

The researchers blocked Arc production in normal rats by injecting a complementary sequence to Arc gene DNA into the central amygdala. They found that when levels of Arc in the central amygdala were lowered, the spines decreased and anxiety and alcohol consumption increased. When levels of Arc were returned to normal three days post-injection, anxiety and alcohol consumption also returned to normal. In a previous study, researchers found that lowering BDNF in amygdala promoted anxiety and alcohol drinking.

"This is the first direct evidence of the molecular processes occurring in the neurons that is responsible for the co-morbidity of anxiety and alcoholism, which we believe plays a major role in the addictive nature of alcohol," said Pandey.

"This offers the possibility of new therapeutic target -- BDNF-Arc signaling and associated dendritic spines in the amygdala -- or new drug development."

"These observations by Dr. Pandey's research group provide an insight into the link between alcohol and anxiety and could be used to identify new targets for developing medications that alleviate withdrawal-induced anxiety and potentially modify a motivation for drinking," said Antonio Noronha, director of neuroscience and behavior research at the National Institute on Alcohol Abuse and Alcoholism.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>