Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rare syndrome provides clues on obesity, blood pressure

Research on Bardet-Biedl syndrome helps show how resistance to leptin might disrupt brain signals

University of Iowa researchers have found a clue about how resistance to the hormone leptin might disrupt the brain signals that tell the body when to stop eating. The research, which focused on the rare genetic disorder Bardet-Biedl syndrome (BBS), also found an association between leptin resistance and high blood pressure.

The findings, which were based on mouse models developed at the UI, have implications for treating BBS as well as obesity and high blood pressure in people without BBS. The study appeared online March 3 in the Journal of Clinical Investigation.

"Bardet-Biedl syndrome is rare but its symptoms, including obesity and increased risk of heart disease, are similar to problems faced by many people without the syndrome," said Kamal Rahmouni, Ph.D., the study's principal investigator and assistant professor of internal medicine at the UI Roy J. and Lucille A. Carver College of Medicine. "Leptin normally suppresses appetite and increases caloric use. The more we know about how leptin and gene defects affect people with BBS, the more likely it is that we can improve treatment for them and people with similar symptoms."

The research builds on previous BBS findings, including research led by current study team member Val Sheffield, M.D., Ph.D., the Martin and Ruth Carver Chair in Genetics and professor of pediatrics at the UI and a Howard Hughes Medical Institute investigator.

Fewer than one in 10,000 people have BBS. Sheffield, who has discovered or co-discovered the majority of the 12 known BBS genes, developed BBS mice that have the same features as the human condition. The study used a mouse model without BBS and three mouse models that each lacks a protein (Bbs2, Bbs4 or Bbs6) due to a BBS gene deletion.

The team measured daily food intake and body weight of each mouse. Some mice also received daily leptin injections. Mice without BBS lost weight when injected with leptin. However, the mice with any of the three types of BBS gene defects did not respond to leptin and gained weight.

Rahmouni, who has expertise in metabolism and obesity, said the hormone leptin is an obvious candidate when looking at causes of weight gain.

"Leptin is made in adipose (fat) tissue and is supposed to decrease fat stores. However, if we find high levels of it in the plasma, and people still are obese, we know it's not acting correctly and that there is leptin resistance," he said.

The team also found that even very young mice with BBS, whose body weights were the same as the non-BBS mice, had high levels of leptin in the plasma, indicating leptin resistance. The team then looked at a specific brain region of mice with BBS to understand why this occurred.

"We know that leptin regulates body weight and food intake through the hypothalamus in the brain. In the mice with BBS, we saw that Pomc, one of the three main genes normally regulated by leptin, was not properly regulated," Rahmouni said.

"This finding allowed us to pinpoint a very specific defect that explains why these mice are obese. The brain normally uses the Pomc gene to tell the body to stop eating, but in the animals with BBS, it doesn't work and so the mice won't feel full. We know that people without this gene have the same symptoms as the mice in our study, so the finding is meaningful," he added.

Rahmouni and colleagues will next examine the specific deficit in the neurons in the brain that might cause the problem with the Pomc (pronounced "pom-c") gene.

In another aspect of the study, the team saw that two of the three mouse models with BBS protein problems (Bbs4 and Bbs6) had high blood pressure. Recent research published by another institution has pointed to the same problem in humans with the same gene defects.

The UI team found that using a chemical to block neurotransmission in mice with the Bbs4 and Bbs6 gene defects lowered blood pressure.

"Because there are so few people with BBS, mouse models are very helpful in trying to understand the blood pressure problem," Rahmouni said. "Currently, there is no specific recommendation on what drug or level of drug to use to treat hypertension in BBS patients. In addition, this work may lead to improved treatment of hypertensive patients without BBS. We hope to learn more about the mechanism in order to improve and even customize treatment."

Becky Soglin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>