Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomedicine system engineered to enhance therapeutic effects of injectable drugs

04.03.2008
In an article featured on the cover of the March issue of “Nature Nanotechnology,” Mauro Ferrari, Ph.D., of The University of Texas Health Science Center at Houston presented a proof-of-concept study on a new multistage delivery system (MDS) for imaging and therapeutic applications.

This discovery could go a long way toward making injectable drugs more effective. The study is included in the March 2 Advance Online Publication on “Nature Nanotechnology’s” Web site (http://www.nature.com/nnano/index.html)

“This is next generation nanomedicine,” said Ferrari, the senior author. “Now, we’re engineering sophisticated nanostructures to elude the body’s natural defenses, locate tumors and other diseased cells, and release a payload of therapeutics, contrasting agents, or both over a controlled period. It’s the difference between riding a bicycle and a motorcycle.”

The study - “Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications” - was conducted with researchers from The University of Texas M. D. Anderson Cancer Center and Rice University.

Nanotechnology offers new and powerful tools to design and to engineer novel drug delivery systems and to predict how they will work once inside the body. “The field of therapeutic nanoparticles began with tiny drug-encapsulated fat bubbles called liposomes, now commonly used in cancer clinics worldwide. Targeting molecules were later added to liposomes and other nanovectors to assist in directing them to diseased cells,” Ferrari said.

Getting intravenous agents to their intended targets is no easy task. It’s estimated that approximately one of every 100,000 molecules of agent reaches its desired destination. Physicians are faced with the quandary of increasing the dosage, which can lead to side effects or reducing the dosage, which can limit the therapeutic benefits.

The multistage approach, according to Ferrari, is needed to circumvent the body’s natural defenses or biobarriers, which act as obstacles to foreign objects injected in the blood stream. “To overcome this problem, we hypothesized and developed a multifunctional MDS comprising stage 1 mesoporous particles loaded with one or more types of stage 2 nanoparticles, which can in turn carry either active agents or higher-stage particles. We have demonstrated the loading, controlled release and simultaneous in vitro delivery of quantum-dots and carbon nanotubes to human vascular cells,” the authors write.

In addition to circumventing biobarriers, Ferrari’s team is working on the biochemical modifications required to efficiently deliver the MDS to a specific cancer lesion. “We have preliminary data that show that we can localize a payload of diagnostic agents, therapeutic agents or combination of both to target cells. Once on site, the molecules can be released in a controlled way and then the MDS will degrade in 24 to 48 hours, be transformed into orthosilicic acid and leave no trace in the body,” Ferrari said.

Lead author Ennio Tasciotti, Ph.D., senior postdoctoral fellow in the NanoMedicine Research Center at the UT Health Science Center at Houston, said the proof-of-concept study would have not been possible without a multidisciplinary effort including contributions from mathematicians, physicists, engineers, chemists and biologists.

“We are dealing with objects that are in the billionth of a meter size range and to study such objects we used cutting edge technologies,” Tasciotti said. “The characterization of the particles was performed using scanning electron and atomic force microscopy, dynamic light scattering, fluorimetry and flow cytometry. The interaction of particles with cells was studied using fluorescence and confocal microscopy as well as a series of assays intended to determine cell viability and internalization rate of the nanoparticles.”

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>