Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomedicine system engineered to enhance therapeutic effects of injectable drugs

04.03.2008
In an article featured on the cover of the March issue of “Nature Nanotechnology,” Mauro Ferrari, Ph.D., of The University of Texas Health Science Center at Houston presented a proof-of-concept study on a new multistage delivery system (MDS) for imaging and therapeutic applications.

This discovery could go a long way toward making injectable drugs more effective. The study is included in the March 2 Advance Online Publication on “Nature Nanotechnology’s” Web site (http://www.nature.com/nnano/index.html)

“This is next generation nanomedicine,” said Ferrari, the senior author. “Now, we’re engineering sophisticated nanostructures to elude the body’s natural defenses, locate tumors and other diseased cells, and release a payload of therapeutics, contrasting agents, or both over a controlled period. It’s the difference between riding a bicycle and a motorcycle.”

The study - “Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications” - was conducted with researchers from The University of Texas M. D. Anderson Cancer Center and Rice University.

Nanotechnology offers new and powerful tools to design and to engineer novel drug delivery systems and to predict how they will work once inside the body. “The field of therapeutic nanoparticles began with tiny drug-encapsulated fat bubbles called liposomes, now commonly used in cancer clinics worldwide. Targeting molecules were later added to liposomes and other nanovectors to assist in directing them to diseased cells,” Ferrari said.

Getting intravenous agents to their intended targets is no easy task. It’s estimated that approximately one of every 100,000 molecules of agent reaches its desired destination. Physicians are faced with the quandary of increasing the dosage, which can lead to side effects or reducing the dosage, which can limit the therapeutic benefits.

The multistage approach, according to Ferrari, is needed to circumvent the body’s natural defenses or biobarriers, which act as obstacles to foreign objects injected in the blood stream. “To overcome this problem, we hypothesized and developed a multifunctional MDS comprising stage 1 mesoporous particles loaded with one or more types of stage 2 nanoparticles, which can in turn carry either active agents or higher-stage particles. We have demonstrated the loading, controlled release and simultaneous in vitro delivery of quantum-dots and carbon nanotubes to human vascular cells,” the authors write.

In addition to circumventing biobarriers, Ferrari’s team is working on the biochemical modifications required to efficiently deliver the MDS to a specific cancer lesion. “We have preliminary data that show that we can localize a payload of diagnostic agents, therapeutic agents or combination of both to target cells. Once on site, the molecules can be released in a controlled way and then the MDS will degrade in 24 to 48 hours, be transformed into orthosilicic acid and leave no trace in the body,” Ferrari said.

Lead author Ennio Tasciotti, Ph.D., senior postdoctoral fellow in the NanoMedicine Research Center at the UT Health Science Center at Houston, said the proof-of-concept study would have not been possible without a multidisciplinary effort including contributions from mathematicians, physicists, engineers, chemists and biologists.

“We are dealing with objects that are in the billionth of a meter size range and to study such objects we used cutting edge technologies,” Tasciotti said. “The characterization of the particles was performed using scanning electron and atomic force microscopy, dynamic light scattering, fluorimetry and flow cytometry. The interaction of particles with cells was studied using fluorescence and confocal microscopy as well as a series of assays intended to determine cell viability and internalization rate of the nanoparticles.”

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>