Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene therapy tool successfully treats mice with hemophilia A

10.06.2002


Scientists at the University of North Carolina have successfully treated mice with hemophilia A using a new approach to gene therapy - RNA trans-splicing. The experimental procedure repairs a mutated section of the gene responsible for hemophilia A, a hereditary bleeding disorder.



Dr. Hengjun Chao, a research assistant professor at the UNC School of Medicine, Gene Therapy Center will present the new research Saturday June 8 in Boston at the Presidential Symposium of the American Society of Gene Therapy Annual Meeting.

Hemophilia A is a sex-linked congenital disease, occurring in one out of 5,000 to 10,000 live males in all populations and is caused by a defect in coagulation factor VIII. The mutation renders the factor VIII gene non-functional resulting in recurrent, non-predictable, spontaneous bleeding into major joints and soft tissues. Currently, the disorder is treated with injections of factor VIII protein in response to bleeding incidents. Conventional approaches to gene therapy have not proven successful against hemophilia A, partially due to difficulties involved in packaging and delivering the large factor VIII gene.


This new study in mice with hemophilia A was conducted in collaboration with scientists from Intronn Inc., Rockville, Maryland, where RNA trans-splicing was pioneered. A "pre-trans-splicing molecule" (PTM) was injected into some of the mice. The molecule, or "cassette," is designed to produce RNA that binds and splices onto the existing faulty RNA, correcting it. The corrected RNA then encodes for the normal factor VIII protein.

"Preliminary data using the hemophilia A mice is very encouraging," said Dr. Hengjun Chao, "After injecting hemophilia A mice with the PTM cassette, factor VIII levels in the blood rose from lower than 1% to a maximum of 20 % of normal factor VIII activity. These levels of activity corrected the bleeding tendency of the hemophilia A mice, thus protecting the mice from a trauma challenge, which is usually lethal to untreated hemophilia A mice.

"If the technology is proven effective in humans, it would provide a more permanent treatment for hemophilia A."

According to Dr. Christopher Walsh, Assistant Professor of Medicine at UNC and principal investigator of the study, RNA trans-splicing offers several advantages over conventional DNA gene therapy. "Among these, only a mutated segment of the gene is repaired rather than the entire gene. Also, very large pieces of DNA cannot be effectively packaged and delivered using conventional DNA viral vector therapy. This new gene therapy tool will help treat hemophilia A as well as a host of other genetic diseases such as cystic fibrosis, sickle cell anemia, muscular dystrophy and some forms of cancer."



Note: Contact Chao at (919) 966-9117, hchao@med.unc.edu. From June 6-9, contact Chao at the Boston Marriott Copley Place, 617-236-5800.

School of Medicine contact: Les Lang at (919) 843-9687, llang@med.unc.edu

Leslie H. Lang | EurekAlert

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>