Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children with autism may learn from 'virtual peers'

04.03.2008
Using “virtual peers” -- animated life-sized children that simulate the behaviors and conversation of typically developing children -- Northwestern University researchers are developing interventions designed to prepare children with autism for interactions with real-life children.

Justine Cassell, professor of communication studies and electrical engineering and computer science, recently presented a preliminary study on the work at a meeting of the American Association for the Advancement of Science.

“Children with high-functioning autism may be able to give you a lecture on a topic of great interest to them but they can’t carry on a ‘contingent’ -- or two-way -- conversation,” said Cassell, director of Northwestern’s Center for Technology and Social Behavior.

Cassell and researcher Andrea Tartaro collected data from six children with high-functioning autism aged 7 to 11 as they engaged in play during an hour-long session with a real-life child, and with a virtual peer named Sam.

In an analysis of those interactions, they found that children with autism produced more and more “contingent” sentences when they spoke with the virtual peer, while their sentences did not become increasingly contingent when they were paired with the real-life children.

“Certainly we’re not saying that virtual peers make the best playmates for children with autism,” said Tartaro. “The overall goal is for the children with autism to generalize the skills they learn in practice sessions with virtual peers to meaningful interactions with real-world children.”

Nor are Northwestern researchers saying they can teach “contingency” -- appropriate back and forth conversation -- in a single session. But their findings hold promise that virtual peers can be useful in helping children with autism develop communication and social skills.

And virtual peers have some distinct advantages over real-life children when it comes to practicing social skills. For starters, children with autism often like technology. “It interacts to us,” said one child with autism upon first meeting a virtual peer.

What’s more, said Cassell, virtual peers don’t get tired or impatient. “We can program their conversation to elicit socially-skilled behavior, and we can vary the way that they look and behave so children with autism are exposed to different kinds of behavior.”

Cassell and Tartaro’s study is part of larger efforts taking place in the Articulab, the Northwestern University laboratory where Cassell and colleagues explore how people communicate with and through technology.

In the Articulab, Cassell, who was trained as a psychologist and linguist, and Tartaro are teaming up with psychologist Miri Arie to develop assessment and intervention procedures that they hope will give them a better understanding of peer behaviors of children with autism.

A major challenge for children with autism is learning the rules of social behavior that typically developing children seem to learn intuitively.

“Although children’s play appears spontaneous and wild, it follows certain basic social rules,” said Arie. “We hope virtual peers like Sam will allow children with autism to practice the rules behind joining a game, holding a conversation and maintaining social interaction. Then they can apply their newly acquired skills to real-life situations.”

Wendy Leopold | alfa
Further information:
http://articulab.northwestern.edu/
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>