Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tighter tummies: a new way to combat weight gain

04.03.2008
Two cell proteins that relax the gut and help accommodate a big meal have been identified by UCL (University College London) scientists. The proteins could offer a future drug target against weight gain, by preventing the stomach from expanding.

In a paper published in this month’s issue of the Journal of Pharmacology and Experimental Therapeutics, Dr Brian King and Dr Andrea Townsend-Nicholson explored the molecular basis of relaxations of the gut.

In the study, the authors identified two protein receptors – P2Y1 and P2Y11 – involved in fast and slow relaxations of the gut. These proteins were identified in the guinea pig, but are also present in the human gut, and thus offer the potential as a future target for drug treatment. Further research by the UCL team will focus on the human isoform of the P2Y11 protein receptor.

Dr Brian King of the UCL Department of Neuroscience, Physiology and Pharmacology says: “The mechanisms we have identified are important to the normal workings of the stomach - a hollow organ which actively relaxes to help accommodate the size of your meal. The human stomach has a ‘resting’ internal volume of 75 millilitres but, by relaxing its muscular wall, can expand to an internal volume of two litres or more - a 25-fold increase in the volume it can accept. This expansion is controlled by nerves inside the stomach wall and these nerves release molecules that stimulate the P2Y1 and P2Y11 receptor proteins embedded in muscle cells in the gut wall.

“The mechanism of slow relaxation of the stomach might represent a future drug target in the fight to control weight gain and reverse obesity. We are looking to identify drugs that would block the P2Y11 receptor and, therefore, prevent slow relaxation of the stomach. As a result of blocking the P2Y11-based mechanism, meal size would be smaller, offering the person a better chance of regulating their food intake.

“This would be a brand new approach to weight control. At present, the most successful way to help obese patients lose weight is gastric banding or stomach stapling, both of which reduce the maximum volume of the stomach. But these are also tricky surgical procedures, not without attendant risks. A pill that could replace this surgery, yet have the same effect, might be a useful alternative.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>