Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible target to treat deadly bloodstream infections

03.03.2008
Researchers at the University of Illinois at Chicago have discovered a possible target to treat bloodstream bacterial infections.

Most bacterial pathogens can invade the bloodstream, which can lead to severe sepsis, a syndrome that kills about 215,000 of the 750,000 people affected in the United States each year, according to a study published in the journal Critical Care Medicine.

"The growth of bacterial pathogens in blood represents one of the most dangerous stages of infection," said Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology. "Before we can discover an antibiotic to treat bloodstream infections, we first had to discover which enzymes are essential for bacteria to live in the bloodstream.

"Our major goal was to identify genes that are critical for the survival and growth of bacteria in blood."

The study appears in the February issue of the journal PLoS Pathogens.

A graduate student in Mankin's laboratory, Shalaka Samant, infected human blood in a test tube with E. coli bacteria, a major cause of bloodstream infections in hospitalized patients.

Using a novel technique developed in Mankin's laboratory, Samant discovered that 19 E. coli mutants out of more than 4,000 she tested could not grow in blood. The majority of the mutants carried a deletion of a gene involved in making nucleotides, the building blocks of DNA and RNA.

The result suggested that the biosynthesis nucleotides is crucial for the growth of the bacteria in human blood, Samant said.

Samant expanded her research to another bloodstream pathogen -- Bacillus anthracis, the causative agent of anthrax.

"There are few treatment options available for the late stages of anthrax infections," Samant said. "We found that, similar to E. coli, anthracis bacilli that could not biosynthesize nucleotides also were unable to grow in blood."

To add to Samant's study, a team of researchers led by Dr. James Cook, chief of infectious diseases, immunology and internal medicine at the University of Illinois Medical Center at Chicago, showed Bacillus anthracis mutants that were unable to synthesize nucleotides were not able to infect mice. After they were infected with anthrax, the mice remained healthy, with no bacteria detected in their blood.

Mankin said the enzymes of nucleotide biosynthesis could make excellent antibiotic targets. The UIC Center for Pharmaceutical Biotechnology is now working to identify drugs that inhibit these enzymes.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>