Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible target to treat deadly bloodstream infections

03.03.2008
Researchers at the University of Illinois at Chicago have discovered a possible target to treat bloodstream bacterial infections.

Most bacterial pathogens can invade the bloodstream, which can lead to severe sepsis, a syndrome that kills about 215,000 of the 750,000 people affected in the United States each year, according to a study published in the journal Critical Care Medicine.

"The growth of bacterial pathogens in blood represents one of the most dangerous stages of infection," said Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology. "Before we can discover an antibiotic to treat bloodstream infections, we first had to discover which enzymes are essential for bacteria to live in the bloodstream.

"Our major goal was to identify genes that are critical for the survival and growth of bacteria in blood."

The study appears in the February issue of the journal PLoS Pathogens.

A graduate student in Mankin's laboratory, Shalaka Samant, infected human blood in a test tube with E. coli bacteria, a major cause of bloodstream infections in hospitalized patients.

Using a novel technique developed in Mankin's laboratory, Samant discovered that 19 E. coli mutants out of more than 4,000 she tested could not grow in blood. The majority of the mutants carried a deletion of a gene involved in making nucleotides, the building blocks of DNA and RNA.

The result suggested that the biosynthesis nucleotides is crucial for the growth of the bacteria in human blood, Samant said.

Samant expanded her research to another bloodstream pathogen -- Bacillus anthracis, the causative agent of anthrax.

"There are few treatment options available for the late stages of anthrax infections," Samant said. "We found that, similar to E. coli, anthracis bacilli that could not biosynthesize nucleotides also were unable to grow in blood."

To add to Samant's study, a team of researchers led by Dr. James Cook, chief of infectious diseases, immunology and internal medicine at the University of Illinois Medical Center at Chicago, showed Bacillus anthracis mutants that were unable to synthesize nucleotides were not able to infect mice. After they were infected with anthrax, the mice remained healthy, with no bacteria detected in their blood.

Mankin said the enzymes of nucleotide biosynthesis could make excellent antibiotic targets. The UIC Center for Pharmaceutical Biotechnology is now working to identify drugs that inhibit these enzymes.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>