Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible target to treat deadly bloodstream infections

03.03.2008
Researchers at the University of Illinois at Chicago have discovered a possible target to treat bloodstream bacterial infections.

Most bacterial pathogens can invade the bloodstream, which can lead to severe sepsis, a syndrome that kills about 215,000 of the 750,000 people affected in the United States each year, according to a study published in the journal Critical Care Medicine.

"The growth of bacterial pathogens in blood represents one of the most dangerous stages of infection," said Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology. "Before we can discover an antibiotic to treat bloodstream infections, we first had to discover which enzymes are essential for bacteria to live in the bloodstream.

"Our major goal was to identify genes that are critical for the survival and growth of bacteria in blood."

The study appears in the February issue of the journal PLoS Pathogens.

A graduate student in Mankin's laboratory, Shalaka Samant, infected human blood in a test tube with E. coli bacteria, a major cause of bloodstream infections in hospitalized patients.

Using a novel technique developed in Mankin's laboratory, Samant discovered that 19 E. coli mutants out of more than 4,000 she tested could not grow in blood. The majority of the mutants carried a deletion of a gene involved in making nucleotides, the building blocks of DNA and RNA.

The result suggested that the biosynthesis nucleotides is crucial for the growth of the bacteria in human blood, Samant said.

Samant expanded her research to another bloodstream pathogen -- Bacillus anthracis, the causative agent of anthrax.

"There are few treatment options available for the late stages of anthrax infections," Samant said. "We found that, similar to E. coli, anthracis bacilli that could not biosynthesize nucleotides also were unable to grow in blood."

To add to Samant's study, a team of researchers led by Dr. James Cook, chief of infectious diseases, immunology and internal medicine at the University of Illinois Medical Center at Chicago, showed Bacillus anthracis mutants that were unable to synthesize nucleotides were not able to infect mice. After they were infected with anthrax, the mice remained healthy, with no bacteria detected in their blood.

Mankin said the enzymes of nucleotide biosynthesis could make excellent antibiotic targets. The UIC Center for Pharmaceutical Biotechnology is now working to identify drugs that inhibit these enzymes.

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>