Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers Researchers Unlock Mysteries of Vitamin A Metabolism During Embryonic Development

03.03.2008
Researchers at Rutgers have unlocked some of the mysteries of how the developing embryo reacts to fluctuations in the amount of vitamin A present in the maternal blood stream. Their results are presented in the February 28 issue of the Journal of Biological Chemistry.

The researchers studied the role of LRAT, a protein that facilitates the formation of vitamin A stores in the body, during embryonic development. In particular, they showed how LRAT protects developing tissues from potentially toxic levels of vitamin A that have been ingested by the mother. Although this function of LRAT had previously been hypothesized in adults, this is the first time that its role has been demonstrated during embryonic development.

The developing mammalian embryo is entirely dependent on the maternal circulation for its supply of retinoids, the vitamin A metabolites produced in the body. These are essential nutrients and they control the formation of the embryo’s heart, central nervous system, eyes and other important organs and tissues. Malformations of the developing embryo can occur when too little, or too much, vitamin A is consumed by the mother.

“We were looking for the mechanisms that allow the fetus to maintain adequate amount of retinoids, whether the mother has over- or under-consumed vitamin A,” said Dr. Loredana Quadro, an assistant professor in the Department of Food Science and member of the Center for Lipid Research at the Rutgers School of Environmental and Biological Sciences. “We also looked at the effects of different levels of vitamin A being transferred from the mother to the fetus.”

When vitamin A is ingested, it is converted into retinyl ester (RE) in the intestine from where it is secreted in the bloodstream packaged with other dietary lipids into lipoprotein particles called chylomicrons. The majority of dietary RE reaches the liver, the main body storage site of vitamin A. Under insufficient dietary vitamin A intake, the liver transforms RE into retinol (ROH), which is then secreted into the bloodstream bound to retinol-binding protein (RBP), its sole specific serum carrier, to be delivered to the target tissues. Upon intake through a specific membrane receptor named Stra6, ROH is ultimately converted to retinoic acid (RA), which is the active form of vitamin A. If tissue RA is in excess, it is transformed into inactive forms, such as 4-hydroxy retinoic acid or 4-oxo retinoic acid (OXO-RA) by the action of a specific enzyme named Cyp26A1.

“When we think about vitamin A, we think about one compound,” said Quadro. “But in reality, the term vitamin A comprises a family of different compounds. Each one has a slightly different action, and plays a different role.”

The Rutgers researchers took a closer look at how ROH is metabolized into RE and RA to maintain an optimal balance of retinoids during the formation of the embryo. Mutant mice lacking both RBP and LRAT were generated to perform this study, so as to interfere with the two main pathways of maternal vitamin A delivery to the fetus (ROH-RBP from the liver stores and RE of dietary origin).

“We hypothesized that the lack of ROH-RBP and LRAT would make the embryo more vulnerable to changes in maternal dietary vitamin A intake,” said Quadro “and our data proved this to be correct. Indeed, a severe embryonic vitamin A deficiency is readily attainable when the mothers are deprived of dietary vitamin A during pregnancy. Therefore, this strain turned out to be a very good model to study how embryonic development is affected by fluctuations in the amount of retinoids present in the maternal diet and hence in the maternal circulation”.

The researchers identified LRAT, Cyp26A1 and Stra6 as the three key molecular players that act in coordination to protect the developing tissues from potentially detrimental levels of vitamin A ingested by the mother. Understanding vitamin A metabolism in the developing fetus could have broad implications. Consumption of large doses of dietary supplements and vitamins, including vitamin A, has become a very common practice in recent years, generating the necessity to investigate the effects of high doses of vitamin A intake at different stages of the lifecycle, including pregnancy and development. These studies expand our knowledge of maternal-fetal nutrition and dietary contribution to embryonic development and may ultimately provide new insight into appropriate dietary practices during pregnancy.

This research was lead by Quadro and carried out primarily by her lab members, Youn-Kyung Kim, a graduate assistant, and Dr. Lesley Wassef, a post-doctoral associate. Others contributing to the study were Leora Hamberger, a former research assistant in Quadro’s laboratory, Dr. William Blaner and Roseann Piantedosi from Columbia University and Dr. Krzysztof Palczewski from Case Western Reserve.

The paper was previously published on the Journal of Biological Chemistry’s web site on December 19, 2007.

Contact: Michele Hujber
732-932-7000 ext. 4204
E-mail: hujber@aesop.rutgers.edu

Michele Hujber | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>