Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes involved in inflammation may hold clue to age-related macular degeneration

29.02.2008
A University of Southampton research team, led by Professor Andrew Lotery, has identified a new genetic risk factor for age-related macular degeneration (AMD), a major cause of untreatable blindness in elderly people in developed countries.

The study is published today by the British Journal of Ophthalmology.

AMD is a progressive disease affecting the retinal pigment in the macular region at the back of the eye. Building on their previous research, which showed that genes that control inflammation were important for developing AMD, the researchers took DNA samples from 478 people with AMD and from 555 people with no signs of the disease. They then looked for evidence of variations in genes controlling the production and suppression of cytokines - powerful chemicals involved in inflammatory processes in the body.

Their work paid off when they identified that one of the genetic variants (251A/T), which is associated with a gene that boosts the production of interleukin 8 (known as IL-8), was significantly more common among the patients with AMD. This held true even after taking account of age, sex, weight, and smoking, which is a known risk factor for AMD.

'This is exciting research which helps us understand why people develop AMD,' says Professor Lotery. 'In the future we may be able to target patients with this genetic risk factor for specific anti-inflammatory treatments, maybe with something as simple as aspirin! This knowledge should allow us to get much better treatment results.'

Professor Lotery's research has been supported by the University of Southampton and the Gift of Sight appeal. He adds: 'I would like to thank everyone who has made a donation to this very worthwhile cause.'

If repeated in larger studies, Professor Lotery and his colleagues suggest that their findings might lead to the possibility of genetic screening for AMD and the development of biological agents to control it.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk/mediacentre/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>