Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Association with Schizophrenia Found by Researchers

29.02.2008
Schizophrenia emerges from an altered pattern of brain development, and researchers continue to search for the genes that cause the brain to develop along a path that ultimately leads to schizophrenia. In a high priority article to be published in Biological Psychiatry on March 1st, researchers report their findings on a new genetic link to schizophrenia.

A prior genetic mapping study indicated that a particular gene, multiple epidermal growth factor-like domains 10 or MEGF10, may be associated with schizophrenia. In this new paper, Chen and colleagues directly studied this particular MEGF10 gene in both schizophrenia patients and healthy control subjects.

They found that a variant of the MEGF10 gene is associated with the heritable risk for schizophrenia in family-based and case-control genetic studies. Further, the MEGF10 gene appears to be expressed to a greater extent in post-mortem brain tissue from individuals diagnosed with schizophrenia compared to tissue from a group of unaffected individuals.

Dr. Xiangning Chen, corresponding author for this article and assistant professor of psychiatry and human genetics in the Virginia Commonwealth University School of Medicine, explains that “the significance of the paper is that it provides evidence that a gene, i.e. MEGF10, directly involved in apoptosis is found associated with schizophrenia. It has long been speculated that dysfunction of apoptosis may be a cause of schizophrenia, but there [has been] little direct evidence.” Apoptosis is an important biological process of programmed cell death in humans and other complex organisms, and abnormal apoptotic processes have been implicated in a variety of diseases.

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments on the curiosity of the association between schizophrenia and the MEGF10 gene, which influences the development of skin cells (the epidermis): “One clue may be that nerve cells and skin cells are derived from the same type of primitive cells early in the development of the embryo. Another link may be that features of epidermal development, such as the development of fingerprints, are abnormal in schizophrenia.“

The findings of this study indicate that it may be important for the field of schizophrenia research to more intensively study MEGF10, to understand how it influences brain development, and how it might be related to the treatment of schizophrenia.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>