Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Study: Real-Time Imaging Device May Improve Surgery for Congenital Colon Disease

29.02.2008
Spectral imaging identifies diseased tissue without need for biopsy

Researchers at Cedars-Sinai Medical Center are developing a spectral imaging system that could result in shorter operating times for infants undergoing surgery for Hirschsprung’s disease, according to a mouse study reported in the Journal of Biophotonics.

The study documents that in addition to its diagnostic potential, spectral imaging may provide an “optical biopsy,” allowing precise localization of a needed intervention.

Spectral imaging is based on the fact that light reflected from a target can be captured and measured by highly sensitive equipment to develop a characteristic “signature” based on wavelength. In this study, the colon tissue of six mice with the equivalent of Hirschsprung’s disease was analyzed and compared to that of controls. With repeated measurements and calculations, unique signatures for normal tissue and for diseased tissue emerged.

Spectral imaging does not detect the presence or absence of ganglion cells themselves. Instead, the spectral signature reflects differences in the composition of normal and diseased tissue.

As a result of this study in laboratory mice, human clinical trials will be planned, providing spectral imaging for intraoperative decision-making in Hirschsprung's disease, a congenital condition affecting nerve cells of the large intestine. The technology, developed at Cedars-Sinai’s Minimally Invasive Surgical Technologies Institute (MISTI) is adaptable to other types of surgery.

Hirschsprung’s usually affects specialized nerve (ganglion) cells in the lower portion of the large intestine, although the entire colon can be involved. Ganglion cells normally stimulate smooth muscle of the intestinal wall to push stool through the colon, but in sections where ganglia are missing (aganglionosis) the process comes to a halt, causing severe constipation that can lead to obstruction, massive infection and even death.

Estimated to affect one in 5,000 babies, the disease can be treated in a minimally invasive surgical procedure that removes the diseased portion of the colon and attaches the healthy colon to the anus. One of the critical portions of the operation is the accurate and precise determination of the point at which normal colon ends and disease begins. If too little colon is removed, the patient is likely to continue to develop significant constipation, but if too much is removed, chronic diarrhea may result, which can lead to other major health problems.

“The location and length of the transition zone between healthy and abnormal tissue varies considerably in Hirschsprung’s disease patients and must be precisely identified to properly perform the operation,” said Philip K. Frykman, M.D., Ph.D., Associate Director of Pediatric Surgery at Cedars Sinai and first author of the article. “The determination is routinely done by taking a number of small samples from the colon wall and sending them to the lab where a pathologist looks for the presence or absence of ganglion cells and other features. But this process may take 45 to 60 minutes, during which the operation is essentially on hold and the patient remains under general anesthesia.

“Spectral imaging, on the other hand, could provide immediate results, increasing patient safety and operating room efficiency,” added Frykman, who specializes in minimally invasive surgery for infants and children and holds a research grant from Cedars-Sinai to study Hirschsprung’s disease.

There is a financial factor, too. Reducing time in the operating room could make a difference of several thousand dollars.

“The images showed a clear distinction, and this was confirmed by pathological analysis. Based on our results, it appears that spectral imaging methods could be used during operations, in real time, to help surgeons distinguish normal from abnormal tissue, without requiring traditional biopsy,” said Daniel L. Farkas, Ph.D., vice-chairman for research in the Department of Surgery, director of the Minimally Invasive Surgical Technologies Institute, and senior author of the journal article.

Biophotonics – the interdisciplinary field dealing with interactions between biological entities and photons, basic units of light – is an emerging research area, with translational potential. Although spectral imaging and other photonic technologies have been used in advanced applications such as satellite reconnaissance for many years, only very recently have scientists begun translating these approaches into biological and medical uses.

At Cedars-Sinai and a few biophotonic research centers in the United States and Europe, spectral imaging is being studied for possible use in a variety of surgical situations. For each potential application, newly developed devices, software and criteria are evaluated in animal studies to show "proof of concept" before human clinical trials are launched.

The Journal of Biophotonics is a new, international publication covering the broad range of research on the interaction between light and biological material.

The study was supported in part by the US Navy Bureau of Medicine and Surgery.

Citation: Journal of Biophotonics, “Spectral imaging for precise surgical intervention in Hirschsprung’s Disease,” published online Feb. 25, 2008.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.prpacific.com

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>