Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Study: Real-Time Imaging Device May Improve Surgery for Congenital Colon Disease

29.02.2008
Spectral imaging identifies diseased tissue without need for biopsy

Researchers at Cedars-Sinai Medical Center are developing a spectral imaging system that could result in shorter operating times for infants undergoing surgery for Hirschsprung’s disease, according to a mouse study reported in the Journal of Biophotonics.

The study documents that in addition to its diagnostic potential, spectral imaging may provide an “optical biopsy,” allowing precise localization of a needed intervention.

Spectral imaging is based on the fact that light reflected from a target can be captured and measured by highly sensitive equipment to develop a characteristic “signature” based on wavelength. In this study, the colon tissue of six mice with the equivalent of Hirschsprung’s disease was analyzed and compared to that of controls. With repeated measurements and calculations, unique signatures for normal tissue and for diseased tissue emerged.

Spectral imaging does not detect the presence or absence of ganglion cells themselves. Instead, the spectral signature reflects differences in the composition of normal and diseased tissue.

As a result of this study in laboratory mice, human clinical trials will be planned, providing spectral imaging for intraoperative decision-making in Hirschsprung's disease, a congenital condition affecting nerve cells of the large intestine. The technology, developed at Cedars-Sinai’s Minimally Invasive Surgical Technologies Institute (MISTI) is adaptable to other types of surgery.

Hirschsprung’s usually affects specialized nerve (ganglion) cells in the lower portion of the large intestine, although the entire colon can be involved. Ganglion cells normally stimulate smooth muscle of the intestinal wall to push stool through the colon, but in sections where ganglia are missing (aganglionosis) the process comes to a halt, causing severe constipation that can lead to obstruction, massive infection and even death.

Estimated to affect one in 5,000 babies, the disease can be treated in a minimally invasive surgical procedure that removes the diseased portion of the colon and attaches the healthy colon to the anus. One of the critical portions of the operation is the accurate and precise determination of the point at which normal colon ends and disease begins. If too little colon is removed, the patient is likely to continue to develop significant constipation, but if too much is removed, chronic diarrhea may result, which can lead to other major health problems.

“The location and length of the transition zone between healthy and abnormal tissue varies considerably in Hirschsprung’s disease patients and must be precisely identified to properly perform the operation,” said Philip K. Frykman, M.D., Ph.D., Associate Director of Pediatric Surgery at Cedars Sinai and first author of the article. “The determination is routinely done by taking a number of small samples from the colon wall and sending them to the lab where a pathologist looks for the presence or absence of ganglion cells and other features. But this process may take 45 to 60 minutes, during which the operation is essentially on hold and the patient remains under general anesthesia.

“Spectral imaging, on the other hand, could provide immediate results, increasing patient safety and operating room efficiency,” added Frykman, who specializes in minimally invasive surgery for infants and children and holds a research grant from Cedars-Sinai to study Hirschsprung’s disease.

There is a financial factor, too. Reducing time in the operating room could make a difference of several thousand dollars.

“The images showed a clear distinction, and this was confirmed by pathological analysis. Based on our results, it appears that spectral imaging methods could be used during operations, in real time, to help surgeons distinguish normal from abnormal tissue, without requiring traditional biopsy,” said Daniel L. Farkas, Ph.D., vice-chairman for research in the Department of Surgery, director of the Minimally Invasive Surgical Technologies Institute, and senior author of the journal article.

Biophotonics – the interdisciplinary field dealing with interactions between biological entities and photons, basic units of light – is an emerging research area, with translational potential. Although spectral imaging and other photonic technologies have been used in advanced applications such as satellite reconnaissance for many years, only very recently have scientists begun translating these approaches into biological and medical uses.

At Cedars-Sinai and a few biophotonic research centers in the United States and Europe, spectral imaging is being studied for possible use in a variety of surgical situations. For each potential application, newly developed devices, software and criteria are evaluated in animal studies to show "proof of concept" before human clinical trials are launched.

The Journal of Biophotonics is a new, international publication covering the broad range of research on the interaction between light and biological material.

The study was supported in part by the US Navy Bureau of Medicine and Surgery.

Citation: Journal of Biophotonics, “Spectral imaging for precise surgical intervention in Hirschsprung’s Disease,” published online Feb. 25, 2008.

Sandy Van | Cedars-Sinai Medical Center
Further information:
http://www.prpacific.com

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>