Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse Study: Real-Time Imaging Device May Improve Surgery for Congenital Colon Disease

Spectral imaging identifies diseased tissue without need for biopsy

Researchers at Cedars-Sinai Medical Center are developing a spectral imaging system that could result in shorter operating times for infants undergoing surgery for Hirschsprung’s disease, according to a mouse study reported in the Journal of Biophotonics.

The study documents that in addition to its diagnostic potential, spectral imaging may provide an “optical biopsy,” allowing precise localization of a needed intervention.

Spectral imaging is based on the fact that light reflected from a target can be captured and measured by highly sensitive equipment to develop a characteristic “signature” based on wavelength. In this study, the colon tissue of six mice with the equivalent of Hirschsprung’s disease was analyzed and compared to that of controls. With repeated measurements and calculations, unique signatures for normal tissue and for diseased tissue emerged.

Spectral imaging does not detect the presence or absence of ganglion cells themselves. Instead, the spectral signature reflects differences in the composition of normal and diseased tissue.

As a result of this study in laboratory mice, human clinical trials will be planned, providing spectral imaging for intraoperative decision-making in Hirschsprung's disease, a congenital condition affecting nerve cells of the large intestine. The technology, developed at Cedars-Sinai’s Minimally Invasive Surgical Technologies Institute (MISTI) is adaptable to other types of surgery.

Hirschsprung’s usually affects specialized nerve (ganglion) cells in the lower portion of the large intestine, although the entire colon can be involved. Ganglion cells normally stimulate smooth muscle of the intestinal wall to push stool through the colon, but in sections where ganglia are missing (aganglionosis) the process comes to a halt, causing severe constipation that can lead to obstruction, massive infection and even death.

Estimated to affect one in 5,000 babies, the disease can be treated in a minimally invasive surgical procedure that removes the diseased portion of the colon and attaches the healthy colon to the anus. One of the critical portions of the operation is the accurate and precise determination of the point at which normal colon ends and disease begins. If too little colon is removed, the patient is likely to continue to develop significant constipation, but if too much is removed, chronic diarrhea may result, which can lead to other major health problems.

“The location and length of the transition zone between healthy and abnormal tissue varies considerably in Hirschsprung’s disease patients and must be precisely identified to properly perform the operation,” said Philip K. Frykman, M.D., Ph.D., Associate Director of Pediatric Surgery at Cedars Sinai and first author of the article. “The determination is routinely done by taking a number of small samples from the colon wall and sending them to the lab where a pathologist looks for the presence or absence of ganglion cells and other features. But this process may take 45 to 60 minutes, during which the operation is essentially on hold and the patient remains under general anesthesia.

“Spectral imaging, on the other hand, could provide immediate results, increasing patient safety and operating room efficiency,” added Frykman, who specializes in minimally invasive surgery for infants and children and holds a research grant from Cedars-Sinai to study Hirschsprung’s disease.

There is a financial factor, too. Reducing time in the operating room could make a difference of several thousand dollars.

“The images showed a clear distinction, and this was confirmed by pathological analysis. Based on our results, it appears that spectral imaging methods could be used during operations, in real time, to help surgeons distinguish normal from abnormal tissue, without requiring traditional biopsy,” said Daniel L. Farkas, Ph.D., vice-chairman for research in the Department of Surgery, director of the Minimally Invasive Surgical Technologies Institute, and senior author of the journal article.

Biophotonics – the interdisciplinary field dealing with interactions between biological entities and photons, basic units of light – is an emerging research area, with translational potential. Although spectral imaging and other photonic technologies have been used in advanced applications such as satellite reconnaissance for many years, only very recently have scientists begun translating these approaches into biological and medical uses.

At Cedars-Sinai and a few biophotonic research centers in the United States and Europe, spectral imaging is being studied for possible use in a variety of surgical situations. For each potential application, newly developed devices, software and criteria are evaluated in animal studies to show "proof of concept" before human clinical trials are launched.

The Journal of Biophotonics is a new, international publication covering the broad range of research on the interaction between light and biological material.

The study was supported in part by the US Navy Bureau of Medicine and Surgery.

Citation: Journal of Biophotonics, “Spectral imaging for precise surgical intervention in Hirschsprung’s Disease,” published online Feb. 25, 2008.

Sandy Van | Cedars-Sinai Medical Center
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>