Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receptor revealed that turns on genes after consuming unsaturated fats

28.02.2008
In a paper published in the scientific journal PlosONE scientists from Wageningen University in the Netherlands demonstrate the tremendous importance of dietary fat as a regulator of gene expression. Via a combination of several nutrigenomic tools Linda Sanderson and her colleagues reveal that dietary unsaturated fatty acids govern a huge number of genes and do so almost entirely via a special receptor called PPARa.

PPARa, which stands for Peroxisome Proliferator Activated Receptor alpha, is a receptor that can be found in numerous tissues, including liver, heart and intestine. It reacts to certain drugs by turning on specific genes, yet can also respond to fatty acids and fatty acid look-a-likes. Activation of PPARa is known to lower levels of triglycerides in blood, providing a rationale for their use in patients suffering from altered blood lipid levels.

In their nutrigenomics study, the research team led by Linda Sanderson fed mice individual fatty acids in the form of synthetic triglycerides. Using a technique called microarray, which allows for monitoring the expression of thousands of genes simultaneously, they were able to determine exactly which genes are turned on in the mouse liver and which ones are turned off. The researchers found that the fatty acid DHA has the most significant impact and changes the expression of around 600 genes. DHA is found in fatty fish and fish oil and has been associated with numerous health benefits, including lowering of plasma triglycerides and decreasing blood clotting.

The most remarkable about the study is that the effects of unsaturated fatty acids are almost entirely lost in mice that lack the PPARa receptor.From the literature it is known that numerous receptors can supposedly bind fatty acids and turn on genes. Most of these receptors belong to the family of the so called 'nuclear hormone receptors', which includes receptors that bind steroid hormones and fat soluble vitamins. However, it was unknown how important they are in an actual living animal. The new data show that PPARa is by far the most important.

Many of the genes that are turned on by unsaturated fatty acids are involved in breaking down fatty acids to generate energy. This mechanism likely protects the liver cell from build-up of unsaturated fatty acids, which is harmful to the cell. It also likely accounts for the lowering of plasma triglycerides by fish oil.

Until now, all nutritional interventions with dietary fat in either mice or human subjects involved a mixture of fatty acids. For that reason, it has been very difficult to draw clear conclusions about the effects of individual fatty acids. The mixed nutritional/pharmacological intervention with synthetic triglycerides pursued by Sanderson and colleagues represents a creative and novel way to study the molecular effects of dietary fat. They expect that their approach will set a new standard for many future nutrigenomic studies.

Jac Niessen | alfa
Further information:
http://www.wur.nl
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0001681
http://www.nutrigenomicsconsortium.nl/index.html

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>