Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Receptor revealed that turns on genes after consuming unsaturated fats

In a paper published in the scientific journal PlosONE scientists from Wageningen University in the Netherlands demonstrate the tremendous importance of dietary fat as a regulator of gene expression. Via a combination of several nutrigenomic tools Linda Sanderson and her colleagues reveal that dietary unsaturated fatty acids govern a huge number of genes and do so almost entirely via a special receptor called PPARa.

PPARa, which stands for Peroxisome Proliferator Activated Receptor alpha, is a receptor that can be found in numerous tissues, including liver, heart and intestine. It reacts to certain drugs by turning on specific genes, yet can also respond to fatty acids and fatty acid look-a-likes. Activation of PPARa is known to lower levels of triglycerides in blood, providing a rationale for their use in patients suffering from altered blood lipid levels.

In their nutrigenomics study, the research team led by Linda Sanderson fed mice individual fatty acids in the form of synthetic triglycerides. Using a technique called microarray, which allows for monitoring the expression of thousands of genes simultaneously, they were able to determine exactly which genes are turned on in the mouse liver and which ones are turned off. The researchers found that the fatty acid DHA has the most significant impact and changes the expression of around 600 genes. DHA is found in fatty fish and fish oil and has been associated with numerous health benefits, including lowering of plasma triglycerides and decreasing blood clotting.

The most remarkable about the study is that the effects of unsaturated fatty acids are almost entirely lost in mice that lack the PPARa receptor.From the literature it is known that numerous receptors can supposedly bind fatty acids and turn on genes. Most of these receptors belong to the family of the so called 'nuclear hormone receptors', which includes receptors that bind steroid hormones and fat soluble vitamins. However, it was unknown how important they are in an actual living animal. The new data show that PPARa is by far the most important.

Many of the genes that are turned on by unsaturated fatty acids are involved in breaking down fatty acids to generate energy. This mechanism likely protects the liver cell from build-up of unsaturated fatty acids, which is harmful to the cell. It also likely accounts for the lowering of plasma triglycerides by fish oil.

Until now, all nutritional interventions with dietary fat in either mice or human subjects involved a mixture of fatty acids. For that reason, it has been very difficult to draw clear conclusions about the effects of individual fatty acids. The mixed nutritional/pharmacological intervention with synthetic triglycerides pursued by Sanderson and colleagues represents a creative and novel way to study the molecular effects of dietary fat. They expect that their approach will set a new standard for many future nutrigenomic studies.

Jac Niessen | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>