Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism's origins: Mother's antibody production may affect fetal brain

27.02.2008
The mothers of some autistic children may have made antibodies against their fetuses’ brain tissue during pregnancy that crossed the placenta and caused changes that led to autism, suggests research led by Johns Hopkins Children’s Center investigators and published in the February issue of the Journal of Neuroimmunology.

The causes of autism, a disorder manifesting itself with a range of brain problems and marked by impaired social interactions, communication disorders and repetitive behaviors, remain unknown for an estimated 90 percent of children diagnosed with it. Genetic, metabolic and environmental factors have been implicated in various studies of autism, a disorder affecting 1 in 150 U.S. children, according to estimates by the Centers for Disease Control and Prevention.

“Now our research suggests that the mother’s immune system may be yet another factor or a trigger in those already predisposed,” says lead investigator Harvey Singer, M.D., director of pediatric neurology at Hopkins Children’s.

Researchers caution that the findings needn’t be cause for alarm, but should be viewed instead as a step forward in untangling the complex nature of autism.

Mostly anecdotal past evidence of immune system involvement has emerged from unusual antibody levels in some autistic children and from postmortem brain tissue studies showing immune abnormalities in areas of the brain. Antibodies are proteins the body makes in response to viruses and bacteria or sometimes mistakenly against its own tissues. Yet, the majority of children with autism have no clinical evidence of autoimmune diseases, which prompted researchers to wonder whether the antibodies transferred from mother to child during pregnancy could interfere with the fetal brain directly.

To test their hypothesis, the research team used a technique called immunoblotting (or Western blot technology), in which antibodies derived from blood samples are exposed to adult and fetal brain tissue to check whether the antibodies recognize and react against specific brain proteins.

Comparing the antibody-brain interaction in samples obtained from 100 mothers of autistic children and 100 mothers of children without autism, researchers found either stronger reactivity or more areas of reactivity between antibodies and brain proteins in about 40 percent of the samples obtained from the mothers of autistic children. Further, the presence of maternal antibodies was associated with so-called developmental regression in children, increasingly immature behaviors that are a hallmark of autism.

While the findings suggest an association between autism and the presence of fetal brain antibodies, the investigators say further studies are needed to confirm that particular antibodies do indeed cross the placenta and cause damage to the fetal brain.

“The mere fact that a pregnant woman has antibodies against the fetal brain doesn’t mean she will have an autistic child,” Singer says. “Autism is a complex condition and one that is likely caused by the interplay of immune, genetic and environmental factors.”

Researchers are also studying the effect of maternal antibodies in pregnant mice. Preliminary results show that the offspring of mice injected with brain antibodies exhibit developmental and social behaviors consistent with autism.

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>