Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Fluorescent' cells give early warning for eye disease

A device that measures metabolic stress could help eye doctors diagnose disease before symptoms appear

Scientists at the University of Michigan have shown that their new metabolic imaging instrument can accurately detect eye disease at a very early stage. Such a device would be vision-saving because many severe eye diseases do not exhibit early warning signals before they begin to diminish vision. The testing is noninvasive and takes less than 6 minutes to administer to a patient.

In a recent study, two researchers from the U-M Kellogg Eye Center used the instrument to measure the degree to which a subtle visual condition affected six women. Victor M. Elner, M.D., Ph.D., and Howard R. Petty, Ph.D., report their findings in the February issue of Archives of Ophthalmology. The women had been recently diagnosed with pseudotumor cerebri (PTC), a condition that mimics a brain tumor and often causes increased pressure on the optic nerve that can lead to vision loss.

Because each woman’s disease was in a very early stage, the researchers could evaluate how accurately the instrument would detect vision loss as compared to several standard tests used to evaluate vision: visual fields, visual acuity, and pupillary light response. In each case the imaging instrument provided results that were equal to and often superior to the standard tests.

The study grew out of Petty and Elner’s observation that metabolic stress at the onset of disease causes certain proteins to become fluorescent. To measure the intensity of this flavoprotein autofluorescence (FA), they designed a unique imaging system equipped with state-of-the art cameras, filters, and electronic switching, together with customized imaging software and a computer interface.

Petty, a biophysicist and expert in imaging, explains why FA data is a good predictor of disease. “Autofluorescence occurs when retinal cells begin to die, often the first event in diseases like glaucoma and diabetic retinopathy,” he says. “Cell death can be observed microscopically, but not as yet though any current imaging methods. We believe this study is a big step forward toward creating a diagnostic tool that can characterize disease long before symptoms or visible signs appear.”

The women in the study were newly diagnosed with PTC and had not yet received treatment. According to standard tests they had good visual acuity, and their visual field tests indicated either subtle abnormalities or none at all. Visual field testing, used to measure the area seen by the eye, is a standard tool for evaluating eye diseases such as glaucoma.

After the standard vision tests were administered, the researchers measured FA values for the six women and the age-matched control group. All of the patients with PTC had higher FA values in the eye that was more severely affected. In fact, FA values averaged 60% greater in the more affected eye of these women. By contrast, the control group had no significant difference in FA values between their healthy eyes.

The researchers also found that FA data more accurately described the different degree of disease in each eye for a given patient, as compared to the standard vision tests.

Elner, who is an ophthalmologist and a pathologist, says that the ability to detect subtle distinctions is important. “Early treatment for eye disease is so important, and this study suggests that FA activity is a very good indicator of eye disease,” he says. “Cardiologists have long used blood pressure testing to head off heart disease. We believe that FA testing will likewise be a helpful diagnostic tool for eye doctors looking to prevent blindness.”

Elner and Petty have patented the device through the U-M Office of Technology Transfer. They are investigating its use as a screening device in diabetes and other major eye diseases.

Betsy Nisbet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>