Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Hospital of Navarra operates on youngest patient worldwide to have auditory implant in the brain stem

26.02.2008
A team of ear, nose and throat specialists and neurosurgeons at the University Hospital of Navarra, led by doctors Manuel Manrique Rodríguez, specialist in ear, nose and throat surgery and Bartolomé Bejarano Herruzo, specialist in paediatric neurosurgery, have successfully operated on a 13 month-old girl from Murcia, who had been born deaf due to the lack of auditory nerves. She is the youngest patient in the world who has received an auditory implant in the brain stem. As a result of the operation, the child has begun to hear and started language development.

Previously, the medical centre had carried out, also successfully, a similar procedure on girl of eight years. Throughout the world there have only been 38 brain stem implants in children under the age of 12.

In the case in hand, the child was born with a congenital illness characterised by the absence of the cochlear (auditory) nerves which have the task of transmitting to the brain the sound stimuli received by the auditory passage from the exterior. It is notable that the rate of this disorder in the overall population is very low, estimated at one in every 100,000 newly born babies.

Surgical procedure

The auditory nerves which, in the case of the girl from Murcia were nonexistent, connect the most external part of the auditory passage (outer, middle and inner ear) with the cochlear nuclei located in the brain stem, one of the centres of the auditory passage where information received from the outside is processed.

The absence of the cochlear or auditory nerve makes it impossible for the brain of those affected by this pathology to process the sound arriving from the exterior. This is why the treatment consists of directly stimulating the cochlear nuclei and the operation involves implanting electrodes onto these nuclei, in the brain stem of the brain, so that the complete auditory passage function is restored, enabling the electric impulses to arrive at the auditory cortex (of the brain), where meaning is conferred to the stimuli arriving.

Thus, the first phase of the operation, undertaken by the University Hospital team last October, involved implanting a plate of electrodes into the cochlear nuclei of the child. In order to place these electrodes there, access to the brain stem was effected by means of open cranial surgery of 3cm x 3 cm, thus enabling the brain surgeon to slightly retract the cerebellum to gain access to the exact spot where the implant had to be placed.

Once the electrodes’ system is installed and while the operation was taking place, stimulation tests on the device were undertaken in order to confirm the exact position where it had to be placed. One by one the 22 electrodes making up the implant were stimulated in order to check the auditory response. To this end, electroneurophysiological control was carried out in which Audiology and Neurophysiology teams took part. This intraoperational control of the stimulation of the electrodes and the auditory response obtained by each one of these enabled to reposition the implant ‘in situ’, during the operation, until getting the right spot.

Very important activations

The operations with children carried out to date at the University Hospital have achieved highly favourable activations of the electrodes. Generally speaking, of the 22 electrodes implanted, the average activation without side effects is about 10. In both the operations they have undertaken they managed to stimulate 15 and 18 electrodes respectively.

During this operation a receiver-emitter was placed subcutaneously in the head of the patient and connected by a wire to the electrode device. This receiver is what obtains the sound of the other device located on the outside of the head of the child and which transmits sound to the interior by radio-frequency waves.

The external apparatus also has a microphone located behind the ear of the patient and which, in turn, is connected to a processor, required to modulate the characteristics of the sound signals received through the microphone.

The task of the internal receptor is to decode the signal received from the exterior and transform it into electrical impulses that arrive codified at each one of the electrodes. This is when the child receives a stimulus that propagates through the auditory passage to the brain, where the electrical impulses received are processed.

In the last phase of the procedure, carried out in January 2008, the parameters of stimulation to be imprinted in the implanted device, namely intensity and velocity, were determined.

Auditiory verificatons

During the post-operational monitoring of this patient, it was observed that the child has begun to receive sounds and has even started to produce them. This is highly encouraging. The specialists have emphasised the importance of carrying out these operations at an early age when the capacity for learning is greater and the functional structure of the auditory centres is better prepared for receiving acoustic information.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1646&hizk=I

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>