Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Hospital of Navarra operates on youngest patient worldwide to have auditory implant in the brain stem

26.02.2008
A team of ear, nose and throat specialists and neurosurgeons at the University Hospital of Navarra, led by doctors Manuel Manrique Rodríguez, specialist in ear, nose and throat surgery and Bartolomé Bejarano Herruzo, specialist in paediatric neurosurgery, have successfully operated on a 13 month-old girl from Murcia, who had been born deaf due to the lack of auditory nerves. She is the youngest patient in the world who has received an auditory implant in the brain stem. As a result of the operation, the child has begun to hear and started language development.

Previously, the medical centre had carried out, also successfully, a similar procedure on girl of eight years. Throughout the world there have only been 38 brain stem implants in children under the age of 12.

In the case in hand, the child was born with a congenital illness characterised by the absence of the cochlear (auditory) nerves which have the task of transmitting to the brain the sound stimuli received by the auditory passage from the exterior. It is notable that the rate of this disorder in the overall population is very low, estimated at one in every 100,000 newly born babies.

Surgical procedure

The auditory nerves which, in the case of the girl from Murcia were nonexistent, connect the most external part of the auditory passage (outer, middle and inner ear) with the cochlear nuclei located in the brain stem, one of the centres of the auditory passage where information received from the outside is processed.

The absence of the cochlear or auditory nerve makes it impossible for the brain of those affected by this pathology to process the sound arriving from the exterior. This is why the treatment consists of directly stimulating the cochlear nuclei and the operation involves implanting electrodes onto these nuclei, in the brain stem of the brain, so that the complete auditory passage function is restored, enabling the electric impulses to arrive at the auditory cortex (of the brain), where meaning is conferred to the stimuli arriving.

Thus, the first phase of the operation, undertaken by the University Hospital team last October, involved implanting a plate of electrodes into the cochlear nuclei of the child. In order to place these electrodes there, access to the brain stem was effected by means of open cranial surgery of 3cm x 3 cm, thus enabling the brain surgeon to slightly retract the cerebellum to gain access to the exact spot where the implant had to be placed.

Once the electrodes’ system is installed and while the operation was taking place, stimulation tests on the device were undertaken in order to confirm the exact position where it had to be placed. One by one the 22 electrodes making up the implant were stimulated in order to check the auditory response. To this end, electroneurophysiological control was carried out in which Audiology and Neurophysiology teams took part. This intraoperational control of the stimulation of the electrodes and the auditory response obtained by each one of these enabled to reposition the implant ‘in situ’, during the operation, until getting the right spot.

Very important activations

The operations with children carried out to date at the University Hospital have achieved highly favourable activations of the electrodes. Generally speaking, of the 22 electrodes implanted, the average activation without side effects is about 10. In both the operations they have undertaken they managed to stimulate 15 and 18 electrodes respectively.

During this operation a receiver-emitter was placed subcutaneously in the head of the patient and connected by a wire to the electrode device. This receiver is what obtains the sound of the other device located on the outside of the head of the child and which transmits sound to the interior by radio-frequency waves.

The external apparatus also has a microphone located behind the ear of the patient and which, in turn, is connected to a processor, required to modulate the characteristics of the sound signals received through the microphone.

The task of the internal receptor is to decode the signal received from the exterior and transform it into electrical impulses that arrive codified at each one of the electrodes. This is when the child receives a stimulus that propagates through the auditory passage to the brain, where the electrical impulses received are processed.

In the last phase of the procedure, carried out in January 2008, the parameters of stimulation to be imprinted in the implanted device, namely intensity and velocity, were determined.

Auditiory verificatons

During the post-operational monitoring of this patient, it was observed that the child has begun to receive sounds and has even started to produce them. This is highly encouraging. The specialists have emphasised the importance of carrying out these operations at an early age when the capacity for learning is greater and the functional structure of the auditory centres is better prepared for receiving acoustic information.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1646&hizk=I

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>