Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analyzing brandy: an ‘electronic tongue’ instead of the traditional method

25.02.2008
Researchers from St. Petersburg State University have designed a brandy analyzing device, which is able to significantly lighten the work for manufactures of the drink popular with many people, which is based on ethyl alcohol seasoned in wooden casks.

The device, which represents several sensors and the most complicated hardware and software complex for processing the results obtained by the sensors, enables to confidently tell the ‘young’ drink from the seasoned one and even to distinguish among variants of brandy.

This is of great help both to the ones who manufacture the drink and to those who are duty-bound to reveal counterfeit, which, alas, exists in the market. Certainly, such an ‘electronic tongue’ is unable to replace the cooper of the highest class. But it suits best of all for the routine work – as it is unbiassed, acts quickly, does not fall ill, does not give trouble, and the analysis outcome is expressed not in the feeling (well-bad-that’s the thing- that’s not the thing) but in figures and diagrams.

It should be noted that the notion of ‘electronic nose’ and an ‘electronic tongue’ has become widespread. Certainly, not everywhere but in analyst circles. It means the device intended for determination and/or identification of the objects of complicated composition. Most importantly, this device works on principle of ‘human’ noses and tongues – that is, unlike ordinary analytical instrumentation it is not obliged to separate all components of a complicated raciness of the object’s taste or aroma so that to analyze them later individually. The electronic tongue determines the taste ‘as a whole’ like a good cooper who faultlessly remembers and recognizes gustatory sensations, but, as a rule, has no idea about exact chemical composition of the product. And the electronic nose deals with scents in the same manner – it does not break them down into components but remembers and then determines at once as a whole – by the bouquet.

However, all these devices have one but a very significant drawback. They are never multi-purpose. For each task (should it be identification of rare earth elements in spent fuel or analysis of coffee, tea, juice, vodka, or dairy produce), an individual set of sensors should be developed to enable accurate reveal and identification of the aroma in question without ‘digressing’ to other foreign tastes and scents. Therefore, in this case, when the problem was posed to the St. Petersburg chemists by brandy manufactures from South Africa (the highest professionalism of Russian scientists, who create electronic tongues, is known all over the world), the chemists had first to think which sensors would allow to solve the problem, to select appropriate software and then to ‘train’ the selected sensors on real objects – on samples of brandy with known characteristics.

As the South-African brandy somewhat resembles cognac (both drinks are aged in oak casks after distillation), the task was to ‘teach’ the device, firstly, to distinguish the ‘young’ unseasoned drink from the seasoned one. The St. Petersburg ‘electronic tongue’ has coped with this task more than successfully. This is quite obvious – the seasoned brandy contain tannin, the presence of which fundamentally changes chemical composition the drink. Then there came a task to teach the device to distinguish variants of the drink, and to tell the brandy produced in laboratory environment from the one produced via industrial process. They have also succeeded in this task although not that brilliantly – expectancy of ‘hitting’ made approximately 3 out of 4. This is not that bad in principle – coopers also make mistakes.

“It is not for the first time that we worked with brandy, says Andrey Legin, the leader of investigation, Doctor of Chemistry. Prior to the South African Republic we dealt with, for example, the French from the famous town of Cognac (Martell, Remy Martin), so we worked with cognacs. By the way, wooden cask are necessarily made of oak (in France, the oak timber should come from a certain forest), and ethyl alcohol is very romantically called eau-de-vie in French (the juice of life).

In general, we have worked a lot with wines. Besides France and the South-African Republic, we dealt with Italy, Portugal, New Zealand, Australia. We have published about 20 articles, devoted to developments of electronic noses and tongues for similar ‘tasty’ objects.”

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>