Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone Refractory Prostate Cancers More Likely to Spread to Other Organs

21.02.2008
Prostate cancers that are resistant to androgen deprivation therapy are more invasive and more likely to spread to other organs than androgen dependent prostate cancers, UCLA cancer researchers have found.

Virtually all prostate cancers are androgen dependent at first, but they progress and become resistant over time. These hormone refractory or castration resistant cancers can grow despite surgical or medical therapies that deplete testosterone. The UCLA study is the first to link that progression with the cancer's tendency to spread to other organs.

The findings could change the way some prostate cancers are treated, spurring earlier use of hormone therapy to prevent the cancer's spread, said Dr. Robert Reiter, a professor of urology, a researcher at UCLA's Jonsson Cancer Center and senior author of the study.

Published in the Feb. 15 issue of the journal Cancer Research, the study makes the connection between androgen receptor and the spread of prostate cancer as well as the progression to androgen independence. Previous studies have shown that the androgen receptor is responsible for the growth of hormone refractory prostate cancer. However, no one has associated the spread of prostate cancer to the androgen receptor, Reiter said.

"We started noticing that the castration resistant prostate cancer models in the lab seemed to express genes that are typically associated with the spread of cancer," Reiter said. "We began to ask what cell signaling pathways might be responsible. We looked at the androgen receptor and were surprised to find that it was not only overexpressed in castration resistant cancers but also in invasive cancers that still relied on androgen to grow."

The study found that overexpression of the androgen receptor was critical to the cancer becoming more invasive. If a therapy could be found that blocked overexpression of the receptor, it might prevent the spread of certain prostate cancers.

Traditionally, doctors don't like to use hormone treatment - which stops the production of testosterone - early on in the treatment of prostate cancer because of the harsh side effects, which can include hot flashes, osteoporosis and sexual dysfunction. In the past, doctors have waited until the cancer spread to prescribe hormone therapy, Reiter said.

"This study may provide additional scientific rationale to support the recent trend that giving hormone treatment early on is better than waiting," Reiter said. "Early hormone treatment in this group of men might allow them to live longer. High levels of androgen receptor in the primary tumor might also predict which cancers are more likely to spread despite initial surgery or radiation."

This strategy could be particularly effective in high risk men, those with large primary tumors, high Gleason scores and those that have lymph node involvement at diagnosis.

Prostate cancer is the most common cancer in men in the United States. This year alone, more than 218,000 men will be diagnosed with prostate cancer. About 27,000 men will die from the disease.

Reiter and his team will next seek to understand the mechanism by which androgen receptor overexpression is causing the cancer to spread. If they can uncover the mechanism, they might find new and better targets for drug therapy in addition to targeting the androgen receptor.

UCLA's Jonsson Comprehensive Cancer Center comprises about 235 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2007, the Jonsson Cancer Center was named the best cancer center in California by U.S. News & World Report, a ranking it has held for eight consecutive years. For more information on the Jonsson Cancer Center, visit our Web site at www.cancer.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.cancer.ucla.edu
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>