Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone Refractory Prostate Cancers More Likely to Spread to Other Organs

21.02.2008
Prostate cancers that are resistant to androgen deprivation therapy are more invasive and more likely to spread to other organs than androgen dependent prostate cancers, UCLA cancer researchers have found.

Virtually all prostate cancers are androgen dependent at first, but they progress and become resistant over time. These hormone refractory or castration resistant cancers can grow despite surgical or medical therapies that deplete testosterone. The UCLA study is the first to link that progression with the cancer's tendency to spread to other organs.

The findings could change the way some prostate cancers are treated, spurring earlier use of hormone therapy to prevent the cancer's spread, said Dr. Robert Reiter, a professor of urology, a researcher at UCLA's Jonsson Cancer Center and senior author of the study.

Published in the Feb. 15 issue of the journal Cancer Research, the study makes the connection between androgen receptor and the spread of prostate cancer as well as the progression to androgen independence. Previous studies have shown that the androgen receptor is responsible for the growth of hormone refractory prostate cancer. However, no one has associated the spread of prostate cancer to the androgen receptor, Reiter said.

"We started noticing that the castration resistant prostate cancer models in the lab seemed to express genes that are typically associated with the spread of cancer," Reiter said. "We began to ask what cell signaling pathways might be responsible. We looked at the androgen receptor and were surprised to find that it was not only overexpressed in castration resistant cancers but also in invasive cancers that still relied on androgen to grow."

The study found that overexpression of the androgen receptor was critical to the cancer becoming more invasive. If a therapy could be found that blocked overexpression of the receptor, it might prevent the spread of certain prostate cancers.

Traditionally, doctors don't like to use hormone treatment - which stops the production of testosterone - early on in the treatment of prostate cancer because of the harsh side effects, which can include hot flashes, osteoporosis and sexual dysfunction. In the past, doctors have waited until the cancer spread to prescribe hormone therapy, Reiter said.

"This study may provide additional scientific rationale to support the recent trend that giving hormone treatment early on is better than waiting," Reiter said. "Early hormone treatment in this group of men might allow them to live longer. High levels of androgen receptor in the primary tumor might also predict which cancers are more likely to spread despite initial surgery or radiation."

This strategy could be particularly effective in high risk men, those with large primary tumors, high Gleason scores and those that have lymph node involvement at diagnosis.

Prostate cancer is the most common cancer in men in the United States. This year alone, more than 218,000 men will be diagnosed with prostate cancer. About 27,000 men will die from the disease.

Reiter and his team will next seek to understand the mechanism by which androgen receptor overexpression is causing the cancer to spread. If they can uncover the mechanism, they might find new and better targets for drug therapy in addition to targeting the androgen receptor.

UCLA's Jonsson Comprehensive Cancer Center comprises about 235 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2007, the Jonsson Cancer Center was named the best cancer center in California by U.S. News & World Report, a ranking it has held for eight consecutive years. For more information on the Jonsson Cancer Center, visit our Web site at www.cancer.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.cancer.ucla.edu
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>