Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone Refractory Prostate Cancers More Likely to Spread to Other Organs

21.02.2008
Prostate cancers that are resistant to androgen deprivation therapy are more invasive and more likely to spread to other organs than androgen dependent prostate cancers, UCLA cancer researchers have found.

Virtually all prostate cancers are androgen dependent at first, but they progress and become resistant over time. These hormone refractory or castration resistant cancers can grow despite surgical or medical therapies that deplete testosterone. The UCLA study is the first to link that progression with the cancer's tendency to spread to other organs.

The findings could change the way some prostate cancers are treated, spurring earlier use of hormone therapy to prevent the cancer's spread, said Dr. Robert Reiter, a professor of urology, a researcher at UCLA's Jonsson Cancer Center and senior author of the study.

Published in the Feb. 15 issue of the journal Cancer Research, the study makes the connection between androgen receptor and the spread of prostate cancer as well as the progression to androgen independence. Previous studies have shown that the androgen receptor is responsible for the growth of hormone refractory prostate cancer. However, no one has associated the spread of prostate cancer to the androgen receptor, Reiter said.

"We started noticing that the castration resistant prostate cancer models in the lab seemed to express genes that are typically associated with the spread of cancer," Reiter said. "We began to ask what cell signaling pathways might be responsible. We looked at the androgen receptor and were surprised to find that it was not only overexpressed in castration resistant cancers but also in invasive cancers that still relied on androgen to grow."

The study found that overexpression of the androgen receptor was critical to the cancer becoming more invasive. If a therapy could be found that blocked overexpression of the receptor, it might prevent the spread of certain prostate cancers.

Traditionally, doctors don't like to use hormone treatment - which stops the production of testosterone - early on in the treatment of prostate cancer because of the harsh side effects, which can include hot flashes, osteoporosis and sexual dysfunction. In the past, doctors have waited until the cancer spread to prescribe hormone therapy, Reiter said.

"This study may provide additional scientific rationale to support the recent trend that giving hormone treatment early on is better than waiting," Reiter said. "Early hormone treatment in this group of men might allow them to live longer. High levels of androgen receptor in the primary tumor might also predict which cancers are more likely to spread despite initial surgery or radiation."

This strategy could be particularly effective in high risk men, those with large primary tumors, high Gleason scores and those that have lymph node involvement at diagnosis.

Prostate cancer is the most common cancer in men in the United States. This year alone, more than 218,000 men will be diagnosed with prostate cancer. About 27,000 men will die from the disease.

Reiter and his team will next seek to understand the mechanism by which androgen receptor overexpression is causing the cancer to spread. If they can uncover the mechanism, they might find new and better targets for drug therapy in addition to targeting the androgen receptor.

UCLA's Jonsson Comprehensive Cancer Center comprises about 235 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2007, the Jonsson Cancer Center was named the best cancer center in California by U.S. News & World Report, a ranking it has held for eight consecutive years. For more information on the Jonsson Cancer Center, visit our Web site at www.cancer.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.cancer.ucla.edu
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>