Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST, NCI, SAIC partner on new method for detecting HER2 breast cancer

21.02.2008
Generations of mothers have served up chicken soup to remedy the common cold, but now the therapeutic fowl may find use in diagnosis as well. Researchers at the National Institute of Standards and Technology (NIST), the National Cancer Institute (NCI) and the scientific research firm SAIC recently showed how chicken antibodies may one day improve the detection of an aggressive form of breast cancer.
HER2 is one of a family of genes that help regulate the growth and proliferation of human cells. Normal cells have two copies of HER2, but about 20 to 25 percent of breast cancers have multiple copies of the gene, resulting in the overproduction of a HER2-encoded protein (called HER2) that stimulates tumors to be particularly fast growing and difficult to treat in a subset of breast cancer patients.

Patients with that form of breast cancer—about 40,000 women in the United States annually—can be treated with a monoclonal antibody called trastuzumab that targets and inhibits the growth of tumor cells with higher-than-normal levels of the HER2 protein. But because the treatment can have adverse side effects, it’s important to screen for those patients who would benefit from it by testing them for one or both of the two relevant biomarkers: the amplified HER2 gene or its overexpressed HER2 protein. Unfortunately, the existing tests for these biomarkers can yield a significant number of false positives—as many as 23 percent of patients in one 2006 clinical study—resulting in some women getting a somewhat risky and expensive treatment that can’t help them.

In a paper in the International Journal of Cancer,* the NIST-NCI-SAIC research team found that chicken immunoglobulin Y (IgY) antibody created against the HER2 protein could be tagged with quantum dot (tiny, intense and tunable sources of colorful light) to more reliably detect the HER2 biomarker than the existing diagnostic tests using mammalian antibodies tagged with conventional fluorescent dyes. Overall, the improvement in sensitivity to the HER2 biomarker was about 40-50 percent.

The increased sensitivity of the HER2 quantum dot-based quantitative bioimaging system stems from the broad genetic differences between avian and human species. The chicken IgY antibody to HER2 reacts strongly with the target protein while ignoring other human proteins that can interfere with current diagnostic tests.

Other advantages of the novel NIST-NCI-SAIC system include faster and larger-scale production of the antibodies and a more reliable quantitative measure of HER2 biomarker level, in part because the quantum dot tags will stay bright and detectable while fluorescent dyes fade over time.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>