Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new techniques for detecting harmful blood clots / air bubbles in arteries

20.02.2008
Major success announced in cutting the risk of post-operative stroke
New techniques for detecting emboli (harmful blood clots/air bubbles in arteries) developed at the University of Leicester have played a major role in dramatically reducing stroke rates after carotid endarterectomy. This is an operation designed to remove narrowings in the main arteries supplying the brain before they can cause a stroke.

Before per-operative embolus monitoring was introduced in 1992, the intra-operative stroke rate during carotid artery procedures was 4%. Today it is 0.2%. Before post-operative monitoring was introduced in 1995, the post-operative stroke rate was 2.7%. Today it is extremely rare.

Overall, the 30-day death/stroke rate has fallen from 6% to 2.6%.

The emboli detection techniques developed by Professor David H Evans and Professor A Ross Naylor in the Department of Cardiovascular Sciences at the University of Leicester involve the use of Doppler ultrasound, the same technique used to detect the fetal heartbeat in pregnant women. The work was recently presented at an international conference on Ultrasound in Medicine in Australia.

In the case of emboli detection, the ‘transducer’ is placed on the side of the patient’s head, just in front of the ear, and is used to detect the movement of emboli through blood vessels in the brain. The technique is painless and harmless.

Patients undergoing various types of operation have this small ultrasound transducer attached to the side of their head to give early warning of embolism occurring.

If emboli are detected appropriate measures can be taken to reduce or prevent the embolism from occurring. In some patients the monitoring will continue for 1 or 2 hours post-surgery. This reduces the likelihood of the patient suffering a stroke.

Emboli may be pieces of atheroma that have been dislodged from diseased arteries, they may be blood clots, or they may be air bubbles accidentally introduced into the blood.

They travel through the circulation until they become ‘wedged’ in an artery. This prevents blood flow in that artery and therefore starves the territory supplied by the artery of its blood supply and thus oxygen.

This can lead to the death of the affected tissue. If this occurs in the brain it leads to stroke, if it occurs in the heart it leads to myocardial infarction. In general small solid emboli are much more likely to cause stroke than similarly sized gaseous emboli, and one of the techniques the Leicester scientists have developed helps them to distinguish one from the other.

Professor of Medical Physics at the University, David Evans, commented: “We have been involved in cerebral embolus research here in Leicester for over 15 years. Much of our work to date has centred on improving the safety of carotid artery surgery.

“More recently we have started to work with cardiac surgeons on embolism during open-heart surgery, in the hope of reducing potentially harmful effects on the brain of open-heart surgery.”

Professor Naylor (consultant vascular surgeon) commented; “The paradox with carotid endarterectomy is that although this is a proven operation for preventing stroke in the long term, it is also directly responsible for causing a stroke in a small number of patients in the peri-operative period. The lower the initial risk, the greater the long term benefit.

“The research performed here in Leicester has contributed towards a 60% sustained reduction in the overall operative risk which translates into greatly enhanced long term benefit to the patient and considerable rehabilitation savings to the NHS.”

Dr Isabel Lee from The Stroke Association commented: “We are extremely encouraged by the results from this programme of research that was funded by The Stroke Association.

“It is encouraging to see how simple monitoring of patients following a carotid endarterectomy can reduce the risk of stroke by a significant amount. We look forward to seeing how this research translates into clinical practice, where it could lead to the prevention of many potentially devastating strokes.”

*Professor Evans is Professor of Medical Physics at the University of Leicester, and Head of Service, Medical Physics, at the University Hospitals of Leicester NHS Trust. Professor Naylor is an Honorary Professor of Surgery at the University of Leicester, and a Consultant Vascular Surgeon, at the University Hospitals of Leicester NHS Trust.

Notes to Editors: For more information on this please contact David H Evans, Professor of Medical Physics, Department of Cardiovascular Sciences, School of Medicine, University of Leicester, tel +44 (0) 116 258 5610, email dhe@le.ac.uk or Professor A. Ross Naylor, Department of Vascular Surgery, based at Leicester Royal Infirmary. Tel +44 116 2587768, email ross.naylor@uhl-tr.nhs.uk

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk
http://www.le.ac.uk/press/experts/intro.html

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>