Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT creates gecko-inspired bandage

19.02.2008
MIT researchers and colleagues have created a waterproof adhesive bandage inspired by gecko lizards that may soon join sutures and staples as a basic operating room tool for patching up surgical wounds or internal injuries.

Drawing on some of the principles that make gecko paws unique, the surface of the bandage has the same kind of nanoscale hills and valleys that allow the lizards to cling to walls and ceilings.

Layered over this landscape is a thin coating of glue that helps the bandage stick in wet environments, such as to heart, bladder or lung tissue. And because the bandage is biodegradable, it dissolves over time and does not have to be removed.

The team is led by MIT Institute Professor Robert Langer and Jeff Karp, an instructor of medicine at Brigham and Women's Hospital and Harvard Medical School. Both are also faculty members at the Harvard- MIT Division of Health Sciences and Technology (HST).

The work will be described in the Feb. 18 online issue of the Proceedings of the National Academy of Sciences.

“There is a big need for a tape-based medical adhesive,” said Karp.
For instance, a surgical adhesive tape made from this new material could wrap around and reseal the intestine after the removal of a diseased segment or after a gastric bypass procedure. It could also patch a hole caused by an ulcer. Because it can be folded and unfolded, it has a potential application in minimally invasive surgical procedures that are particularly difficult to suture because they are performed through a very small incision.

Gecko-like dry adhesives have been around since about 2001 but there have been significant challenges to adapt this technology for medical applications given the strict design criteria required. For use in the body, they must be adapted to stick in a wet environment and be constructed from materials customized for medical applications. Such materials must be biocompatible, meaning they do not cause inflammation; biodegradable, meaning they dissolve over time without producing toxins; and elastic, so that they can conform to and stretch with the body's tissues.

The MIT researchers met these requirements by building their medical adhesive with a “biorubber” invented by Karp, Langer and others.

Using micropatterning technology-the same technology used to create computer chips-the researchers shaped the biorubber into different hill and valley profiles at nanoscale dimensions. After testing them on intestinal tissue taken from pigs, they selected the stickiest profile, one with pillars spaced just wide enough to grip and interlock with the underlying tissue.

Karp then added a very thin layer of a sugar-based glue, to create a strong bond even to a wet surface. The resulting bandage “is something we never expect to remove,” said Karp. Because of that difference, he continued, “we're not mimicking the gecko”-which has sticky paws but can still lift them up to walk-“we are inspired by the gecko to create a patterned interface to enhance the surface area of contact and thus the overall strength of adhesion.”

When tested against the intestinal tissue samples from pigs, the nanopatterned adhesive bonds were twice as strong as unpatterned adhesives. In tests of the new adhesive in living rats, the glue- coated nanopatterned adhesive showed over a 100 percent increase in adhesive strength compared to the same material without the glue.

Moreover, the rats showed only a mild inflammatory response to the adhesive, a minor reaction that does not need to be overcome for clinical use.

Among other advantages, the adhesive could be infused with drugs designed to release as the biorubber degrades. Further, the elasticity and degradation rate of the biorubber are tunable, as is the pillared landscape. This means that the new adhesives can be customized to have the right elasticity, resilience and grip for different medical applications.

“This is an exciting example of how nanostructures can be controlled, and in so doing, used to create a new family of adhesives,” said Langer.

Other MIT authors of the paper are co-first authors Alborz Mahdavi, a former MIT lab technician now at the California Institute of Technology; Lino Ferreira, a former MIT postdoctoral fellow now at the University of Coimbra, Portugal; Jason W. Nichol and Edwin P. Chan, HST postdoctoral fellows; David J.D. Carter and Jeff Borenstein of Draper Laboratory; HST doctoral student Chris Bettinger; and MIT graduate students Siamrut Patanavanich, Loice Chignozha, Eli B. Joseph, Alex Galakatos and Seungpyo Hong, all from the Department of Chemical Engineering. Additional authors are from Massachusetts General Hospital and the University of Basel, Switzerland.

The work was funded by the National Institutes of Health, the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation, and the MIT-Portugal program.

Written by Elizabeth Dougherty, Harvard-MIT Division of Health Sciences and Technology

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>