Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor system improves detection of lead, heavy metals

14.02.2008
PNNL develops inexpensive portable detection system for rapid, accurate analysis of toxic metals

The Department of Energy's Pacific Northwest National Laboratory has developed a new rapid, portable and inexpensive detection system that identifies personal exposures to toxic lead and other dangerous heavy metals. The device can provide an accurate blood sample measurement from a simple finger prick, which is particularly important when sampling children.

PNNL's portable analyzer system accurately detects lead and other toxic metals in blood as well as in urine and saliva. Results are as reliable as those of current state-of-the-art mass spectrometry systems many times its size. This new system provides a quicker, simpler and easier method of monitoring toxic metal exposures in high-risk populations, such as industrial workers, children and people living in polluted areas.

A bit larger than a lunchbox, the new detection system is field-deployable with plug-and-play features that allow different sensors to be easily exchanged to detect a variety of heavy metal toxins. The entire system is battery-operated and requires about one and one-half times the power of a typical laptop computer. The system also routinely delivers reliable measurements within a rapid two-to-five minute analysis period.

Early production cost estimates indicate that the device may be as much as 10 times less expensive than existing plasma mass spectrometry systems, which lack field portability and require samples to be returned to the lab for time-consuming and more expensive analysis.

Accumulation of lead in children can harm the developing brain, causing reduced IQ, learning disabilities and behavioral problems, among other things. The Centers for Disease Control and Prevention report that about 310,000 U.S. children ages 1 to 5 have high levels of lead in their blood. Recent studies also indicate a link between lead exposure and a decline in mental ability many years later.

Recent attention to children's exposure to lead from toys and products from the Far East has heightened the interest in toxic exposures to heavy metals. The ability to quickly and accurately identify children with elevated blood lead levels is important in providing treatment to those who need it. In addition, large numbers of industrial workers may be routinely exposed to toxic heavy metals like cadmium, lead and mercury, which are known to induce various diseases.

"We need next-generation analyzers to reduce the time and lower the costs of analysis for clinical diagnosis," said PNNL scientist and principal investigator Wassana Yantasee. "They will help us better understand the relationship between the exposure to these toxins and how the body responds, which will help in developing new strategies to reduce exposures and risks."

"Our research has focused on optimizing the sensor systems to work with the biological complexities in blood, urine and saliva samples," said Yantasee. "Validation of these sensor platforms for use in biomonitoring is particularly important in developing a personalized exposure assessment strategy."

The device can use two classes of sensors for detecting lead and other heavy metals. The first is based on a flow injection system using a mercury-film electrode to analyze metals in blood, urine or saliva samples.

To eliminate the use of toxic mercury in conducting the analysis, the second class of the sensor uses a mercury-free approach of nanostructure materials developed at PNNL. This involves use of either Self-Assembled Monolayers on Mesoporous Supports - SAMMS™ technology - or functionalized magnetic nanoparticles that provide excellent detection sensitivity at a parts-per-billion level.

PNNL's research is supported by extramural grants from the CDC's National Institute of Occupational Safety and Health, and the National Institutes of Health's National Institute of Environmental Health Sciences.

Battelle, which operates PNNL for DOE, filed a patent application in December 2007 for the improved sensor technology used in this next-generation biomonitoring device. Battelle is seeking commercialization partners and welcomes companies interested in the technology to contact Commercialization Manager Bruce Harrer or access Portable Electrochemical Sensing System for more information.

Geoffrey Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>