Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists research delivering drugs direct to the brain

14.02.2008
Scientists at the University of Portsmouth have won nearly half a million pounds to try and develop a way of allowing drugs to be delivered straight to the brain.

The grant allows a team to spend the next three years trying to unlock the blood brain barrier to allow drugs to be targeted at diseases including cancer. The £451,000 grant was given by the Biotechnology and Biological Sciences Research Council.

Drugs already exist that can be successfully used against some diseases elsewhere in the body but when those diseases are in the brain they are much harder to treat because most drugs cannot penetrate the protective barrier.

Dr Eugen Barbu, a chemist, will lead a team of four scientists from the School of Pharmacy aiming to modify a natural polymer so it can temporarily create an opening in the blood brain barrier and get through to deliver medicine. They will use polymer-based nanoparticles that are approximately 1/1000 of the diameter of a single human hair, which is about 80,000 nanometres wide.

The modified polymer would be small enough to breach the blood brain barrier and would act like a delivery container carrying the drug. Once they deliver their drug load to the brain they would biodegrade. A novel living 3D cell culture model of the human blood-brain barrier will be used to initially screen the interaction between the nanoparticles and the brain.

The research team chose to study natural polymers because they make excellent drug-carriers, are non-toxic and are biodegradable and biocompatible, so the brain won’t reject them.

Prof Darek Gorecki will be working alongside Dr Barbu. He said: “The BBSRC thought it was worth investing half a million pounds because though other scientists are studying ways of penetrating the blood brain barrier this idea of using modified natural polymers is novel.

“It is very experimental at this stage and the distance from here to doctors being able to better treat brain tumours is a long way off.

“The brain relies upon a rich blood supply but the barrier exists because it is vital not everything in the blood can get through. It is a very sophisticated filter. We are hoping that by using modified polymers working in various ways we can generate a temporary opening in the cells of the blood brain barrier and allow drugs to be delivered straight to the brain.”

If successful, the temporary unlocking of the filter would allow a range of brain diseases to be treated more efficiently. It is hoped that in the long term these formulations will be useful for the treatment of a range of brain diseases including brain tumours, stroke and neurodegenerative disorders.

The research group comprises a multidisciplinary team of Dr Barbu, senior research fellow, Dr John Tsibouklis, reader in polymer science, Professor Geoffrey Pilkington, a professor of cellular and molecular neuro-oncology and world-renowned expert in brain tumour biology and pathology, and Prof Gorecki, professor of molecular medicine. The team work in the Institute of Biomedical and Biomolecular Science, Biomaterials and Bionanotechnology and Cellular and Molecular Medicine Groups at the university, and will be supported by two post-doctoral researchers.

Kate Daniell | alfa
Further information:
http://www.port.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>