Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists research delivering drugs direct to the brain

14.02.2008
Scientists at the University of Portsmouth have won nearly half a million pounds to try and develop a way of allowing drugs to be delivered straight to the brain.

The grant allows a team to spend the next three years trying to unlock the blood brain barrier to allow drugs to be targeted at diseases including cancer. The £451,000 grant was given by the Biotechnology and Biological Sciences Research Council.

Drugs already exist that can be successfully used against some diseases elsewhere in the body but when those diseases are in the brain they are much harder to treat because most drugs cannot penetrate the protective barrier.

Dr Eugen Barbu, a chemist, will lead a team of four scientists from the School of Pharmacy aiming to modify a natural polymer so it can temporarily create an opening in the blood brain barrier and get through to deliver medicine. They will use polymer-based nanoparticles that are approximately 1/1000 of the diameter of a single human hair, which is about 80,000 nanometres wide.

The modified polymer would be small enough to breach the blood brain barrier and would act like a delivery container carrying the drug. Once they deliver their drug load to the brain they would biodegrade. A novel living 3D cell culture model of the human blood-brain barrier will be used to initially screen the interaction between the nanoparticles and the brain.

The research team chose to study natural polymers because they make excellent drug-carriers, are non-toxic and are biodegradable and biocompatible, so the brain won’t reject them.

Prof Darek Gorecki will be working alongside Dr Barbu. He said: “The BBSRC thought it was worth investing half a million pounds because though other scientists are studying ways of penetrating the blood brain barrier this idea of using modified natural polymers is novel.

“It is very experimental at this stage and the distance from here to doctors being able to better treat brain tumours is a long way off.

“The brain relies upon a rich blood supply but the barrier exists because it is vital not everything in the blood can get through. It is a very sophisticated filter. We are hoping that by using modified polymers working in various ways we can generate a temporary opening in the cells of the blood brain barrier and allow drugs to be delivered straight to the brain.”

If successful, the temporary unlocking of the filter would allow a range of brain diseases to be treated more efficiently. It is hoped that in the long term these formulations will be useful for the treatment of a range of brain diseases including brain tumours, stroke and neurodegenerative disorders.

The research group comprises a multidisciplinary team of Dr Barbu, senior research fellow, Dr John Tsibouklis, reader in polymer science, Professor Geoffrey Pilkington, a professor of cellular and molecular neuro-oncology and world-renowned expert in brain tumour biology and pathology, and Prof Gorecki, professor of molecular medicine. The team work in the Institute of Biomedical and Biomolecular Science, Biomaterials and Bionanotechnology and Cellular and Molecular Medicine Groups at the university, and will be supported by two post-doctoral researchers.

Kate Daniell | alfa
Further information:
http://www.port.ac.uk

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>