Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists research delivering drugs direct to the brain

14.02.2008
Scientists at the University of Portsmouth have won nearly half a million pounds to try and develop a way of allowing drugs to be delivered straight to the brain.

The grant allows a team to spend the next three years trying to unlock the blood brain barrier to allow drugs to be targeted at diseases including cancer. The £451,000 grant was given by the Biotechnology and Biological Sciences Research Council.

Drugs already exist that can be successfully used against some diseases elsewhere in the body but when those diseases are in the brain they are much harder to treat because most drugs cannot penetrate the protective barrier.

Dr Eugen Barbu, a chemist, will lead a team of four scientists from the School of Pharmacy aiming to modify a natural polymer so it can temporarily create an opening in the blood brain barrier and get through to deliver medicine. They will use polymer-based nanoparticles that are approximately 1/1000 of the diameter of a single human hair, which is about 80,000 nanometres wide.

The modified polymer would be small enough to breach the blood brain barrier and would act like a delivery container carrying the drug. Once they deliver their drug load to the brain they would biodegrade. A novel living 3D cell culture model of the human blood-brain barrier will be used to initially screen the interaction between the nanoparticles and the brain.

The research team chose to study natural polymers because they make excellent drug-carriers, are non-toxic and are biodegradable and biocompatible, so the brain won’t reject them.

Prof Darek Gorecki will be working alongside Dr Barbu. He said: “The BBSRC thought it was worth investing half a million pounds because though other scientists are studying ways of penetrating the blood brain barrier this idea of using modified natural polymers is novel.

“It is very experimental at this stage and the distance from here to doctors being able to better treat brain tumours is a long way off.

“The brain relies upon a rich blood supply but the barrier exists because it is vital not everything in the blood can get through. It is a very sophisticated filter. We are hoping that by using modified polymers working in various ways we can generate a temporary opening in the cells of the blood brain barrier and allow drugs to be delivered straight to the brain.”

If successful, the temporary unlocking of the filter would allow a range of brain diseases to be treated more efficiently. It is hoped that in the long term these formulations will be useful for the treatment of a range of brain diseases including brain tumours, stroke and neurodegenerative disorders.

The research group comprises a multidisciplinary team of Dr Barbu, senior research fellow, Dr John Tsibouklis, reader in polymer science, Professor Geoffrey Pilkington, a professor of cellular and molecular neuro-oncology and world-renowned expert in brain tumour biology and pathology, and Prof Gorecki, professor of molecular medicine. The team work in the Institute of Biomedical and Biomolecular Science, Biomaterials and Bionanotechnology and Cellular and Molecular Medicine Groups at the university, and will be supported by two post-doctoral researchers.

Kate Daniell | alfa
Further information:
http://www.port.ac.uk

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>