Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug guts map brings scientists closer to understanding different bugs’ role in the body

06.02.2008
Scientists have made a major step towards understanding precisely which bugs in the gut are involved in which processes in the body, by mapping the different species of bugs living in seven members of the same Chinese family.

Bugs in the gut are known as gut microbes and trillions live symbiotically inside the human body. Different people can have very different populations of gut microbes living inside them.

The makeup of each person’s gut microflora influences their health, and abnormalities in gut microbes have been linked to diseases such as diabetes and obesity.

Research has already shown that the makeup of an individual's gut microbes is can be changed by their diet and other environmental factors. Scientists are hopeful that many diseases could be tackled by creating drugs that target different gut bugs and correct abnormalities in them.

However, although it is known that gut bugs are involved in many of the body’s processes, the relationship between different species of bug and different processes has previously been defined only at a broad level, mainly concentrating on the metabolism of fat.

This is partly because it is difficult to observe the interactions inside a living human body in such microscopic detail. Mapping the species of gut microflora inside a person requires DNA fingerprinting of the bugs and detailed analysis is extremely complex and expensive. Prior to the new study, only five people in the world had ever had their gut microflora profiled in depth and had these data published.

The new study is a major step towards fully defining how different gut bugs affect the metabolism – the chemical reactions inside the body that keep it working, for example in converting food into energy or in maintaining cells.

The researchers believe that once they have a complete map of the interactions between the bugs and the metabolism, they will be able to use metabolic information to determine the makeup and function of a person’s gut microflora, and then find new ways to treat different diseases by targeting specific gut bugs and engineering their interactions with the host.

The new study brings researchers closer to creating this system of translating the makeup of a person’s gut bugs by analysing their metabolic profile.

The research gives scientists a much better idea of which bugs are particularly key. For example, the researchers found that a common “friendly” species of gut bug known as Faecalibacterium prausnitzii was statistically linked to the presence of eight diverse chemicals involved in metabolism, suggesting that this bug plays a key role in co-regulating multiple metabolic processes.

Professor Jeremy Nicholson, lead author of the study from the Department of Biomolecular Medicine at Imperial College London, explained: “It’s now widely recognised that gut bugs play an important part in people’s health but we don’t know which of the hundreds of different species of gut microbes have the biggest influence on us, or exactly how they are involved in the thousands of processes inside the body. Our new study has enabled us to see and map to a greater extent than ever before how the bugs interact with the body.

“Now we have developed a new way of exploring the connections between bugs and man we can hope to find a ‘Rosetta Stone’ to translate the functional properties of the bugs and so improve therapies to treat disorders of the gut and related conditions,” he added.

The study also showed that the Chinese individuals had different bacteria at the species level to the five American individuals profiled in previous studies. This suggests that there are significant differences in the metabolisms of people from the two countries, which are not just down to their own genetic makeup. The researchers suggest that these differences should be taken into account when looking at people’s risks of different diseases in the two countries.

Prof Liping Zhao, coordinator of this project and senior author leading the microbial analysis from Shanghai Centre for Systems Biomedicine at Shanghai Jiao Tong University, indicated that this new methodology is a significant step toward understanding whole-body systems biology or global systems biology.

“Simultaneous molecular profiling of gut microbiota and host metabolism of a large cohort of people for a reasonably long time can lead to discovery of pre-disease biomarkers representing typical changes during the transition stage from health to disease in chronic conditions such as cancers or metabolic syndromes. This can eventually lead to effective management of public health in a predictive and preventive manner," he said.

For the study, scientists used DNA fingerprinting of the gut microflora to gain a picture of which species of bug were living inside each of the seven volunteers. Each volunteer had a different makeup of gut bugs inside them, even though they were members of the same Chinese family and therefore were closely linked in genetic and lifestyle terms.

The scientists compared the variations in the volunteers’ gut microflora with the variations in their metabolisms. They determined the metabolic profile of the volunteers by analysing samples from their faeces and urine, using NMR spectroscopic urinary profiling.

The volunteers in the study were four generations of the same family, six living in China and one in the UK. Three were males, aged between 18 and 55, and four were females aged between 1.5 and 95. Although the sample size was small, this is still the largest survey of its kind to date and the study represents two years’ work.

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>