Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bug guts map brings scientists closer to understanding different bugs’ role in the body

06.02.2008
Scientists have made a major step towards understanding precisely which bugs in the gut are involved in which processes in the body, by mapping the different species of bugs living in seven members of the same Chinese family.

Bugs in the gut are known as gut microbes and trillions live symbiotically inside the human body. Different people can have very different populations of gut microbes living inside them.

The makeup of each person’s gut microflora influences their health, and abnormalities in gut microbes have been linked to diseases such as diabetes and obesity.

Research has already shown that the makeup of an individual's gut microbes is can be changed by their diet and other environmental factors. Scientists are hopeful that many diseases could be tackled by creating drugs that target different gut bugs and correct abnormalities in them.

However, although it is known that gut bugs are involved in many of the body’s processes, the relationship between different species of bug and different processes has previously been defined only at a broad level, mainly concentrating on the metabolism of fat.

This is partly because it is difficult to observe the interactions inside a living human body in such microscopic detail. Mapping the species of gut microflora inside a person requires DNA fingerprinting of the bugs and detailed analysis is extremely complex and expensive. Prior to the new study, only five people in the world had ever had their gut microflora profiled in depth and had these data published.

The new study is a major step towards fully defining how different gut bugs affect the metabolism – the chemical reactions inside the body that keep it working, for example in converting food into energy or in maintaining cells.

The researchers believe that once they have a complete map of the interactions between the bugs and the metabolism, they will be able to use metabolic information to determine the makeup and function of a person’s gut microflora, and then find new ways to treat different diseases by targeting specific gut bugs and engineering their interactions with the host.

The new study brings researchers closer to creating this system of translating the makeup of a person’s gut bugs by analysing their metabolic profile.

The research gives scientists a much better idea of which bugs are particularly key. For example, the researchers found that a common “friendly” species of gut bug known as Faecalibacterium prausnitzii was statistically linked to the presence of eight diverse chemicals involved in metabolism, suggesting that this bug plays a key role in co-regulating multiple metabolic processes.

Professor Jeremy Nicholson, lead author of the study from the Department of Biomolecular Medicine at Imperial College London, explained: “It’s now widely recognised that gut bugs play an important part in people’s health but we don’t know which of the hundreds of different species of gut microbes have the biggest influence on us, or exactly how they are involved in the thousands of processes inside the body. Our new study has enabled us to see and map to a greater extent than ever before how the bugs interact with the body.

“Now we have developed a new way of exploring the connections between bugs and man we can hope to find a ‘Rosetta Stone’ to translate the functional properties of the bugs and so improve therapies to treat disorders of the gut and related conditions,” he added.

The study also showed that the Chinese individuals had different bacteria at the species level to the five American individuals profiled in previous studies. This suggests that there are significant differences in the metabolisms of people from the two countries, which are not just down to their own genetic makeup. The researchers suggest that these differences should be taken into account when looking at people’s risks of different diseases in the two countries.

Prof Liping Zhao, coordinator of this project and senior author leading the microbial analysis from Shanghai Centre for Systems Biomedicine at Shanghai Jiao Tong University, indicated that this new methodology is a significant step toward understanding whole-body systems biology or global systems biology.

“Simultaneous molecular profiling of gut microbiota and host metabolism of a large cohort of people for a reasonably long time can lead to discovery of pre-disease biomarkers representing typical changes during the transition stage from health to disease in chronic conditions such as cancers or metabolic syndromes. This can eventually lead to effective management of public health in a predictive and preventive manner," he said.

For the study, scientists used DNA fingerprinting of the gut microflora to gain a picture of which species of bug were living inside each of the seven volunteers. Each volunteer had a different makeup of gut bugs inside them, even though they were members of the same Chinese family and therefore were closely linked in genetic and lifestyle terms.

The scientists compared the variations in the volunteers’ gut microflora with the variations in their metabolisms. They determined the metabolic profile of the volunteers by analysing samples from their faeces and urine, using NMR spectroscopic urinary profiling.

The volunteers in the study were four generations of the same family, six living in China and one in the UK. Three were males, aged between 18 and 55, and four were females aged between 1.5 and 95. Although the sample size was small, this is still the largest survey of its kind to date and the study represents two years’ work.

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>