Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lower transmission increases dengue deaths

Epidemiological model solves apparent paradox in Thai data

A pair of researchers has answered a puzzle about why efforts to lower the transmission of dengue virus in Thailand have not resulted in decreases in the severe, life-threatening, form of the infection. In fact, it seems to have had just the opposite effect.

Katia Koelle, an assistant professor in biology at Duke University, and Yoshiro Nagao, a graduate student at Osaka University Graduate School of Medicine, examined dengue infection data from Thailand going back to 1981, and constructed a set of epidemiological models in an attempt to explain this strange pattern.

Normally, an infection of the mosquito-borne virus produces a few days of non-fatal fever. But in some cases, it results in dengue hemorrhagic fever (DHF), in which capillary bleeding kills about 10% of patients.

Koelle and Nagao wanted to understand why, when transmission rates had apparently dropped due to extensive mosquito control efforts, cases of dengue hemorrhagic fever actually increased, with the largest recorded DHF outbreak occurring in 2001.

The answer, which appears online the week of Feb. 4 in the Proceedings of the National Academy of Sciences, lies in the way the body builds immunity to the four strains of dengue, which is the world's most common mosquito-borne viral disease.

It was known that victims could not get reinfected with a dengue strain they had already experienced. They also were less likely to be ill again with another strain for about a year after a first dengue infection. This "cross-immunity" between strains wanes with time however, as immune system antibodies decrease in number.

In fact, after cross-immunity has faded, another strain of the virus is able to use the remaining low level of antibodies it finds to gain entry into cells, making the infection more severe and resulting more often in DHF.

What Nagao and Koelle zeroed in on with their models was the question of what happens during that year of cross-immunity. One model said the challenges of new strains of virus during that year are defeated by antibodies from the first strain, without creating immunity to the newer strains.

But this model fails to explain the increase in DHF with lower transmission rates. The model that did explain this counterintuitive pattern is one in which patients "sero-convert," or develop new antibodies to additional strains, if they are bitten during the cross-immunity period.

Koelle said that when transmission rates are higher, a person stands a better chance of being bitten by more than one strain during this period of cross-immunity. This results in seroconversion and broader immunity, making a person less likely to get a severe dengue infection after they are no longer protected by cross-immunity.

But when transmission rates fall, as they did in Thailand, fewer people are able to build a library of antibodies during that year of cross-immunity, leaving them susceptible to subsequent strains down the road.

In spite of this, Koelle said Thai officials need to keep up the heat on the disease-carriers to "get over the hump" on the epidemiological curve. If transmission were lowered still further, the chances of second and third infections leading to DHF would be dramatically reduced, she said.

"We're definitely at the point where we'd really like to see decreases in the infection rate that are substantial enough to reduce the overall number of dengue hemorrhagic fever cases," she said.

She notes that tough mosquito control is still the best course of action, because a reliable vaccine of all four strains of dengue is not yet available.

Karl Leif Bates | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>