Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers use new method to probe recollections in memory-impaired patients

Neuroscientists continue to debate whether or not long-term memory always depends on a region of the brain called the medial temporal lobe, which contains the brain’s memory-processing center, the hippocampus. A new study of brain-damaged patients by researchers at the University of California, San Diego (UCSD) School of Medicine readdresses the issue using a new method to elicit more detailed long-term memories.

The study, led by Larry R. Squire, Ph.D., professor of psychiatry, neurosciences and psychology at UCSD School of Medicine and research career scientist at the San Diego Veterans Affairs Health System, supports the theory that remote, or very long-term, memory remains intact after the medial temporal lobe is damaged. The results will be published in the early on-line edition of Proceedings of the National Academy of Sciences the week of February 4-8.

In 2005, a study led by Squire and published in the journal Neuron, studied the ability of patients with selective brain damage to recall events in their past. The findings strongly suggested that the ability to recollect “remote autobiographic events,” or distant memories, gradually becomes independent of the medial temporal lobe as time passes.

However, proponents of an opposing theory – that retention of distant memories requires the continued involvement of the hippocampus – suggested that these findings were flawed because the measurement techniques used to elicit remote memories weren’t sensitive enough.

The PNAS study looked at the ability of patients with selective brain damage to recall events from their past using a new method, called the Autobiographic Interview, which uses extensive probing to elicit an average of 50 or more details per memory.

“Using this more sensitive testing method, we found that autobiographical recollection was impaired in patients with medial temporal lobe damage when memories were drawn from the recent past, but fully intact when memories came from the remote past,” said Squire.

The new approach used tape-recorded narratives of extended recollections and determined the number of details that patients produced about events from their early lives. The Autobiographical Interview was administered to three patients with limited hippocampal damage, two with large medial temporal lobe lesions and five controls without any brain damage. Participants were asked to provide one memory from each of five time periods: childhood to age 11, teenage years, early adulthood, middle age and the year immediately prior to testing.

“Each of the amnesic patients was able to provide detailed autobiographical memories, with an average of 50 details per memory, from the three most remote time periods that were sampled,” said first author C. Brock Kirwan, Ph.D., postdoctoral fellow in UCSD’s Institute for Neural Computation.

Previous methods looked at a larger number of remote memories, prompting recollection of approximately 20 details per memory. Kirwan theorized that earlier studies elicited fewer details because it is difficult to produce a large number of details when asked about 24 different episodes. “In any case, we have found remote autobiographical memory to be intact after medial temporal lobe damage, whether patients produce memories with more or fewer details,” he said.

The researchers also conclude that impairment to such remote memories that have sometimes been reported using the Autobiographical Interview or other tests is likely due to significant damage outside the medial temporal lobe.

Debra Kain | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>