Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For treating advanced Parkinson’s, new research points to serotonin

05.02.2008
For most people with Parkinson’s disease, the only relief from the tremors, rigidity and impaired movement associated with the progressive loss of their motor skills is a drug called L-DOPA. But as the disease progresses, L-DOPA can cause prominent side effects that counteract its effectiveness.

Now, Rockefeller University’s Paul Greengard and colleagues at the Karolinska Institute in Sweden provide evidence that serotonin, a well-studied neurotransmitter involved in regulating mood, appetite, sexuality and sleep, also plays a crucial role in Parkinson’s disease.

Using a mouse model of the disease, Greengard’s team shows that side effects associated with repeated L-DOPA treatment can be blocked by manipulating a specific serotonin receptor. The finding, reported this week in Proceedings of the National Academy of Sciences Early Edition online, points to a new target for developing treatments for this disorder, which is the second most common neurodegenerative disease after Alzheimer’s.

“Our study provides a scientific rationale for developing drugs that act on the serotonin 1B receptor for the treatment of advanced Parkinsonism,” says senior co-author Per Svenningsson, a visiting professor in Greengard’s lab and a group leader at the Karolinska Institute in Sweden.

The neurotransmitter dopamine has several functions in the brain, including the regulation of movement. Parkinson’s disease is characterized by a progressive degeneration of dopamine-producing neurons, which causes tremors, rigidity and lack of movement control. These neurons project from the midbrain to an area of the brain called the corpus striatum. Although dopamine signaling is impaired in Parkinson’s patients, serotonin production remains strong. In addition, several serotonin receptors are highly expressed in the striatum and available to modify the action of L-DOPA.

Two years ago, Greengard and Svenningsson identified a protein, called p11, that acts as a regulator of serotonin signaling in the brain. The researchers showed that p11 increases the concentration of the serotonin 1B receptor at synapses, thereby increasing the efficiency of serotonin signaling, and linked this interaction to an individual’s susceptibility to depression and his or her response to antidepressant treatments.

In the new study, Greengard, Svenningsson and their colleagues show that p11 and serotonin also play a role in the L-DOPA-induced symptoms of advanced Parkinson’s disease. Svenningsson and Xiaoqun Zhang, a graduate student at Karolinska, used a mouse model of Parkinson’s disease in which a substance called 6-OHDA causes the destruction of dopamine neurons in one hemisphere of the brain. L-DOPA, because it is a dopamine replacement and a stimulant, causes the 6-OHDA-treated mice to rotate their bodies in the opposite direction of the dopamine-depleted brain hemisphere.

When the researchers gave these mice L-DOPA, they found increased levels of the serotonin 1B receptor and the protein p11 in the striatum. The researchers then used a molecule called CP94253, which binds to the serotonin 1B receptor and mimics the action of serotonin. CP94253 was given to two sets of 6-OHDA-treated mice: one in which p11 was “knocked out” and another with p11 intact.

After treatment with CP94253, rotational behavior and involuntary movements decreased in the p11-intact 6-OHDA-treated mice, but not in the p11 knockout mice — suggesting that CP94253 works through p11. The researchers believe that CP94253, and similar serotonin 1B receptor agonists, may counteract L-DOPA-induced behaviors by reducing the release of GABA, a chemical messenger that inhibits the transmission of nerve impulses. GABA is released from neurons that contain the dopamine D1 receptor.

“Blocking the dopamine D1 receptor is not a treatment option for L-DOPA-induced side effects, since it would diminish the therapeutic efficiency of L-DOPA,” says Greengard, who is Vincent Astor Professor and head of the Laboratory of Molecular and Cellular Neuroscience at Rockefeller. “Developing compounds that target the serotonin 1B receptor may offer an alternative approach for treating advanced Parkinson’s disease.”

Joseph Bonner | alfa
Further information:
http://www.rockefeller.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>