Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostate cancer: Watchful wait or vaccinate?

04.02.2008
Researchers at the University of Southern California have developed a prostate cancer vaccine that prevented the development of cancer in 90 percent of young mice genetically predestined to develop the disease. In the February 1 issue of Cancer Research, they suggest the same strategy might work for men with rising levels of PSA (prostate specific antigen), a potential diagnostic indicator of prostate cancer.

“By early vaccination, we have basically given these mice life-long protection against a disease they were destined to have,” said the study’s lead investigator, W. Martin Kast, Ph.D., a professor of Molecular Microbiology & Immunology and Obstetrics & Gynecology at the Norris Comprehensive Cancer Center. “This has never been done before and, with further research, could represent a paradigm shift in the management of human prostate cancer.”

Now, men with rising PSA levels but no other signs of cancer are advised “watchful waiting” – no treatment until signs of the cancer appear, Kast says. “But what if instead of a watchful wait, we vaccinate" That could change the course of the disease.”

The study findings also represent a new way to think about the use of therapeutic prostate cancer vaccines, Kast says. Vaccines now in testing are designed to treat men whose cancers are advanced and unresponsive to therapy, and results have offered limited clinical benefit, he says. This novel approach targets the precancerous state with the aim of preventing cancer from developing, he says.

The Kast team’s preventive vaccine is designed to mount an immune response against prostate stem cell antigen (PSCA), the protein target of some therapeutic vaccines under development. PSCA, a membrane protein, is over-expressed in about one-third of early-stage prostate cancers, but expression ramps up in all prostate tumors as they grow and advance. PSCA is also expressed at low-levels in normal prostate gland tissue as well as in the bladder, colon, kidney and stomach.

The researchers created a prime-boost vaccination scheme using two kinds of vaccines and tested it in 8-week-old mice that were genetically altered to develop prostate cancer later in life. The first vaccine simply delivered a fragment of DNA that coded for PSCA, thus producing an influx of PSCA protein to alert the immune system. The booster shot, given two weeks later, used a modified horse virus to deliver the PSCA gene.

“Confronting the immune system in two different ways forces it to mount a strong response,” Kast said.

In the experimental group, two of 20 mice developed prostate cancer at the end of one year, and by contrast, all control mice had died of the disease. Researchers found that mice in the experimental group had all developed very small tumors that did not progress. “There were tiny nodules of prostate cancer in the mice that were surrounded by an army of immune system cells,” Kast said. “The vaccination turned the cancer into a chronic, manageable disease.”

The vaccination strategy also works with other antigens, Kast says. The researchers recently tried another prostate cancer membrane target and found that after 1.5 years, 65 percent of experimental mice were still alive, and of those that died, the suspected cause was old age.

Crucially, investigators further found that treated mice did not develop autoimmune disease, a side effect that could develop if the vaccine had also targeted PSCA expression in normal cells. “Theoretically, the vaccine could produce a response in any tissue that expresses the antigen, but the fact that PSCA is expressed in such low levels in normal tissue may prevent that complication,” he said.

Still, studies in humans are needed to ensure autoimmunity does not develop, Kast says.

“We feel this is a very promising approach,” he said. “With just two shots, the vaccine will prime immune cells to be on the lookout for any cell that over-expresses PSCA.”

Staci Vernick Goldberg | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>