Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting gut bugs could revolutionise future drugs

01.02.2008
Revolutionary new ways to tackle certain diseases could be provided by creating drugs which change the bugs in people's guts, according to a Perspective article published today in the journal Nature Reviews Drug Discovery.

Trillions of bugs known as gut microbes live symbiotically in the human gut. They play a key role in many of the processes that take place inside the body. Different people have different types of gut microbes living inside them and abnormalities in some types have recently been linked to diseases such as diabetes and obesity.

The authors of the Perspective argue that targeting gut microbes with new drug therapies, rather than concentrating on the mechanisms in the human body which are the current focus of most drug development programmes, could provide an array of uncharted possibilities for fighting disease. Much research is still needed to untangle the precise role played by each different type of bug.

Professor Jeremy Nicholson, one of the authors of the Perspective from the Department of Biomolecular Medicine at Imperial College London, explained: "It's only recently that we've discovered the huge influence that bugs in the gut have on people's health. The exciting thing about this is that it should be easier to create drugs that can change the bugs than it is to re-engineer human cells and signalling pathways inside the body. Also, if we're not interfering with the body's pathways, these drugs should have less toxic side-effects."

Research has already shown that the makeup of an individual's gut microbes is affected by their diet and other environmental factors. A recent study led by scientists from Imperial College showed that it is possible to alter the makeup of bugs in a mouse's gut, affecting their metabolism, using probiotics.

"We already know that external factors such as altering your diet can change the makeup of the bugs in your gut, so these kinds of therapies will mean a more holistic approach to medicine, looking not just at pharmaceutical treatments but also at lifestyle and nutrition. I think that in ten years' time it will be normal for scientists to take gut bugs into consideration when they are creating new medicines," added Professor Nicholson.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>