Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows that iPods do not interfere with cardiac pacemakers

01.02.2008
A report in the open access journal BioMedical Engineering OnLine refutes claims that portable music players, such as Apple's iPod, interfere with cardiac pacemakers.

Howard Bassen, a researcher with the U.S. Food and Drug Administration in Rockville, Md., led a research team that measured the magnetic fields produced by four different iPod models: a fourth-generation iPod and an iPod with video, and an iPod nano and iPod shuffle. They also measured the voltages delivered inside the pacemaker by the magnetic fields from the iPods. All measurements indicated there would be no effects on users with cardiac pacemakers.

Over the past year, a spate of media reports speculated on iPod interference with cardiac pacemakers. These reports, however, were based on a single incident where a patient with a cardiac pacemaker suffered dizziness while using an iPod. Cardiologists operated an iPod during the patient’s examination, and noted interference with the pacemaker.

The cardiologists published their results in the medical journal, Heart Rhythm.

After publication, there was talk of warning labels for portable music and video players, although a subsequent clinical study failed to show any dangerous connection between the music devices and patients with pacemakers.

Now, Bassen’s more detailed study demonstrates that iPods are not capable of producing electromagnetic interference in implanted pacemakers.

Using a 3-coil sensor, the team measured the magnetic field produced by the iPod at a distance of around 5 to 10 millimeters. They obtained readings for the magnetic field at various specific and small regions 10 mm from an iPod. The peak magnetic field strength was 0.2 millionths of a Tesla, a value hundreds of times lower than the levels capable of interfering with a pacemaker.

In addition, Bassen’s team attempted to detect any voltages these fields might produce within the protective "can" of a pacemaker. The can was placed inside a simulated human torso used by pacemaker manufacturers for interference testing. Bassen and his team found that the voltage levels within the pacemaker can were well below the detection limits of their highly sensitive equipment.

"Based on the observations of our in-vitro study we conclude that no interference effects can occur in pacemakers exposed to the iPods we tested," Bassen concluded.

Charlotte Webber | alfa
Further information:
http://www.biomedical-engineering-online.com/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>