Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows that iPods do not interfere with cardiac pacemakers

01.02.2008
A report in the open access journal BioMedical Engineering OnLine refutes claims that portable music players, such as Apple's iPod, interfere with cardiac pacemakers.

Howard Bassen, a researcher with the U.S. Food and Drug Administration in Rockville, Md., led a research team that measured the magnetic fields produced by four different iPod models: a fourth-generation iPod and an iPod with video, and an iPod nano and iPod shuffle. They also measured the voltages delivered inside the pacemaker by the magnetic fields from the iPods. All measurements indicated there would be no effects on users with cardiac pacemakers.

Over the past year, a spate of media reports speculated on iPod interference with cardiac pacemakers. These reports, however, were based on a single incident where a patient with a cardiac pacemaker suffered dizziness while using an iPod. Cardiologists operated an iPod during the patient’s examination, and noted interference with the pacemaker.

The cardiologists published their results in the medical journal, Heart Rhythm.

After publication, there was talk of warning labels for portable music and video players, although a subsequent clinical study failed to show any dangerous connection between the music devices and patients with pacemakers.

Now, Bassen’s more detailed study demonstrates that iPods are not capable of producing electromagnetic interference in implanted pacemakers.

Using a 3-coil sensor, the team measured the magnetic field produced by the iPod at a distance of around 5 to 10 millimeters. They obtained readings for the magnetic field at various specific and small regions 10 mm from an iPod. The peak magnetic field strength was 0.2 millionths of a Tesla, a value hundreds of times lower than the levels capable of interfering with a pacemaker.

In addition, Bassen’s team attempted to detect any voltages these fields might produce within the protective "can" of a pacemaker. The can was placed inside a simulated human torso used by pacemaker manufacturers for interference testing. Bassen and his team found that the voltage levels within the pacemaker can were well below the detection limits of their highly sensitive equipment.

"Based on the observations of our in-vitro study we conclude that no interference effects can occur in pacemakers exposed to the iPods we tested," Bassen concluded.

Charlotte Webber | alfa
Further information:
http://www.biomedical-engineering-online.com/

More articles from Health and Medicine:

nachricht Fast-tracking T cell therapies with immune-mimicking biomaterials
16.01.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>