Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's molecule is a smart speed bump on the nerve-cell transport highway

22.01.2008
Implications for study of diseases of dementia

Researchers at the University of Pennsylvania School of Medicine discovered that proteins carrying chemical cargo in nerve cells react differently when exposed to the tau protein, which plays an important role in Alzheimer’s disease.

Dynein and kinesin proteins transport cellular cargo towards opposite ends of tracks called microtubules. Tau binds to the microtubule surface and acts like a speed bump to regulate protein traffic, the group found. “But it is a smart speed bump because it impedes these different motor proteins to different degrees,” explains first author Ram Dixit, PhD, a postdoctoral fellow in the lab of senior author Erika Holzbaur, PhD, Professor of Physiology.

“Our findings show a mechanism of regulating the transport of nutrients, signaling molecules, and waste proteins along a nerve cell’s axon,” says Dixit. “Neurodegenerative diseases such as Alzheimer’s arise when pieces of this shipping system goes awry.”

The transport performed by dynein and kinesin is required for continuously providing new proteins to the axon and synapse to maintain normal cellular function, and is also required to remove old, misfolded, or aggregated proteins for degradation. Just as important, this transport is required for moving other proteins from the nerve-cell synapse back to the cell body, which is also required to maintain healthy neurons.

In neurons, microtubules are abundantly decorated with tau. Dynein and kinesin encounter the tau molecules on their travels along the microtubules. The Penn group found that dynein, which carries loads towards the interior of the cell, maneuvers around tau; whereas, kinesin, which carries loads towards the outside of the cell, detaches when it encounters tau.

These findings appear online January 17 in Science in advance of print publication.

Dynein and kinesin’s individual maneuverings when encountering tau allow for the cell to be able to offload cargo where it needs to go with fine-tune accuracy. “Tau may determine where kinesin offloads cargo along the microtubule tracks that radiate out to the cell surface from the center,” says Holzbaur. “And dynein’s ability to back up and go around when it encounters an obstacle such as tau may be a mechanism to ensure that it gets to the center of the cell with its important cargo.”

The group conducted studies using single molecules moving along a tau-decorated microtubule to determine the effects of tau on dynein and kinesin’s movement. Mutations in molecular motors such as dynein and kinesin can lead to degeneration of neurons. These mutations, for example, decrease the efficiency of dynein and kinesin. This problem can lead to the accumulation of misfolded proteins in the cell, which, in turn may lead to the degeneration of the neuron.

“There’s a growing theme that defects in transport are tightly associated with neurodegeneration,” says Holzbaur. “It’s already been shown in Alzheimer’s disease that there is a change in the distribution of tau along microtubules. Instead of kinesin getting its cargo closer to the cell’s outer surface, tau accumulates in the cell body and kinesin’s cargo of newly synthesized proteins gets dropped early, not at the cell surface, thus causing problems. Our findings explain how that can happen.”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>