Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer's molecule is a smart speed bump on the nerve-cell transport highway

Implications for study of diseases of dementia

Researchers at the University of Pennsylvania School of Medicine discovered that proteins carrying chemical cargo in nerve cells react differently when exposed to the tau protein, which plays an important role in Alzheimer’s disease.

Dynein and kinesin proteins transport cellular cargo towards opposite ends of tracks called microtubules. Tau binds to the microtubule surface and acts like a speed bump to regulate protein traffic, the group found. “But it is a smart speed bump because it impedes these different motor proteins to different degrees,” explains first author Ram Dixit, PhD, a postdoctoral fellow in the lab of senior author Erika Holzbaur, PhD, Professor of Physiology.

“Our findings show a mechanism of regulating the transport of nutrients, signaling molecules, and waste proteins along a nerve cell’s axon,” says Dixit. “Neurodegenerative diseases such as Alzheimer’s arise when pieces of this shipping system goes awry.”

The transport performed by dynein and kinesin is required for continuously providing new proteins to the axon and synapse to maintain normal cellular function, and is also required to remove old, misfolded, or aggregated proteins for degradation. Just as important, this transport is required for moving other proteins from the nerve-cell synapse back to the cell body, which is also required to maintain healthy neurons.

In neurons, microtubules are abundantly decorated with tau. Dynein and kinesin encounter the tau molecules on their travels along the microtubules. The Penn group found that dynein, which carries loads towards the interior of the cell, maneuvers around tau; whereas, kinesin, which carries loads towards the outside of the cell, detaches when it encounters tau.

These findings appear online January 17 in Science in advance of print publication.

Dynein and kinesin’s individual maneuverings when encountering tau allow for the cell to be able to offload cargo where it needs to go with fine-tune accuracy. “Tau may determine where kinesin offloads cargo along the microtubule tracks that radiate out to the cell surface from the center,” says Holzbaur. “And dynein’s ability to back up and go around when it encounters an obstacle such as tau may be a mechanism to ensure that it gets to the center of the cell with its important cargo.”

The group conducted studies using single molecules moving along a tau-decorated microtubule to determine the effects of tau on dynein and kinesin’s movement. Mutations in molecular motors such as dynein and kinesin can lead to degeneration of neurons. These mutations, for example, decrease the efficiency of dynein and kinesin. This problem can lead to the accumulation of misfolded proteins in the cell, which, in turn may lead to the degeneration of the neuron.

“There’s a growing theme that defects in transport are tightly associated with neurodegeneration,” says Holzbaur. “It’s already been shown in Alzheimer’s disease that there is a change in the distribution of tau along microtubules. Instead of kinesin getting its cargo closer to the cell’s outer surface, tau accumulates in the cell body and kinesin’s cargo of newly synthesized proteins gets dropped early, not at the cell surface, thus causing problems. Our findings explain how that can happen.”

Karen Kreeger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>