Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Type 1 diabetes triggered by 'lazy' regulatory T-cells

Immunity-controlling T-cells wane with age in some people, triggering autoimmune diabetes

A research team led by Dr. Ciriaco A. Piccirillo of McGill University’s Department of Microbiology and Immunology has discovered that in some individuals, the specialized immunoregulatory T-cells that regulate the body’s autoimmune reactions may lose their effectiveness and become “lazy” over time, leading to the onset of type 1 diabetes. The study – conducted on non-obese diabetic (NOD) mice, which were genetically engineered to model human diabetes – was published in the January 2008 edition of the journal Diabetes.

In diabetes mellitus, or type 1 diabetes, insulin-producing beta islet cells in the pancreas are attacked and destroyed by the body’s own immune system. Patients must inject insulin on a regular basis or risk diabetic shock and death, and are also at increased risk for numerous secondary health problems, including blindness, heart attack and stroke.

“The genetic and cellular mechanisms by which the immune system goes out of control and destroys the islets has been an enigma and an area of great interest over the last few decades,” said Dr. Piccirillo, Canada Research Chair in Regulatory Lymphocytes of the Immune System, and a leading figure in this research area. “For the last several years, it’s been postulated that non-functional regulatory T-cells are the critical mechanism, and this study proves it.”

Regulatory CD4+ T-cells, whose development and function is dictated by the Foxp3 gene in mice and humans, “have the primary function of pouring a cold shower on inflammatory responses,” explained Dr. Piccirillo. “They suppress and regulate the function of various immune responses to microbes, tumors, allergens and transplants.” While the diabetes-susceptible NOD mice actually generate normal numbers of Foxp3 T-cells over their lifetimes, Dr. Piccirillo and his colleagues discovered that the T-cells’ functional potency declined with age, leaving potential autoimmune responses in the pancreas unchecked.

It is likely, the researchers say, that certain genetic predispositions, coupled with the possible contribution of external environmental factors or infections, could potentially alter regulatory T-cell function in susceptible individuals and trigger a full-scale diabetic autoimmune reaction in the pancreas.

“Once they start, these immune responses are like a fire that goes unchecked by firemen, or a car going downhill without brakes,” said Dr. Piccirillo. Moreover, he said, this discovery not only elucidates the mechanism by which type 1 diabetes is triggered, but it also points the way to the development of new immune system-based therapies for a whole range of diseases.

“We believe that these regulatory cells may represent a kind of master switch, and by understanding how they are made, how they function and how they survive, we may be able to stop disease from occurring.”

Mark Shainblum | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>