Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 1 diabetes triggered by 'lazy' regulatory T-cells

17.01.2008
Immunity-controlling T-cells wane with age in some people, triggering autoimmune diabetes

A research team led by Dr. Ciriaco A. Piccirillo of McGill University’s Department of Microbiology and Immunology has discovered that in some individuals, the specialized immunoregulatory T-cells that regulate the body’s autoimmune reactions may lose their effectiveness and become “lazy” over time, leading to the onset of type 1 diabetes. The study – conducted on non-obese diabetic (NOD) mice, which were genetically engineered to model human diabetes – was published in the January 2008 edition of the journal Diabetes.

In diabetes mellitus, or type 1 diabetes, insulin-producing beta islet cells in the pancreas are attacked and destroyed by the body’s own immune system. Patients must inject insulin on a regular basis or risk diabetic shock and death, and are also at increased risk for numerous secondary health problems, including blindness, heart attack and stroke.

“The genetic and cellular mechanisms by which the immune system goes out of control and destroys the islets has been an enigma and an area of great interest over the last few decades,” said Dr. Piccirillo, Canada Research Chair in Regulatory Lymphocytes of the Immune System, and a leading figure in this research area. “For the last several years, it’s been postulated that non-functional regulatory T-cells are the critical mechanism, and this study proves it.”

Regulatory CD4+ T-cells, whose development and function is dictated by the Foxp3 gene in mice and humans, “have the primary function of pouring a cold shower on inflammatory responses,” explained Dr. Piccirillo. “They suppress and regulate the function of various immune responses to microbes, tumors, allergens and transplants.” While the diabetes-susceptible NOD mice actually generate normal numbers of Foxp3 T-cells over their lifetimes, Dr. Piccirillo and his colleagues discovered that the T-cells’ functional potency declined with age, leaving potential autoimmune responses in the pancreas unchecked.

It is likely, the researchers say, that certain genetic predispositions, coupled with the possible contribution of external environmental factors or infections, could potentially alter regulatory T-cell function in susceptible individuals and trigger a full-scale diabetic autoimmune reaction in the pancreas.

“Once they start, these immune responses are like a fire that goes unchecked by firemen, or a car going downhill without brakes,” said Dr. Piccirillo. Moreover, he said, this discovery not only elucidates the mechanism by which type 1 diabetes is triggered, but it also points the way to the development of new immune system-based therapies for a whole range of diseases.

“We believe that these regulatory cells may represent a kind of master switch, and by understanding how they are made, how they function and how they survive, we may be able to stop disease from occurring.”

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>