Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 1 diabetes triggered by 'lazy' regulatory T-cells

17.01.2008
Immunity-controlling T-cells wane with age in some people, triggering autoimmune diabetes

A research team led by Dr. Ciriaco A. Piccirillo of McGill University’s Department of Microbiology and Immunology has discovered that in some individuals, the specialized immunoregulatory T-cells that regulate the body’s autoimmune reactions may lose their effectiveness and become “lazy” over time, leading to the onset of type 1 diabetes. The study – conducted on non-obese diabetic (NOD) mice, which were genetically engineered to model human diabetes – was published in the January 2008 edition of the journal Diabetes.

In diabetes mellitus, or type 1 diabetes, insulin-producing beta islet cells in the pancreas are attacked and destroyed by the body’s own immune system. Patients must inject insulin on a regular basis or risk diabetic shock and death, and are also at increased risk for numerous secondary health problems, including blindness, heart attack and stroke.

“The genetic and cellular mechanisms by which the immune system goes out of control and destroys the islets has been an enigma and an area of great interest over the last few decades,” said Dr. Piccirillo, Canada Research Chair in Regulatory Lymphocytes of the Immune System, and a leading figure in this research area. “For the last several years, it’s been postulated that non-functional regulatory T-cells are the critical mechanism, and this study proves it.”

Regulatory CD4+ T-cells, whose development and function is dictated by the Foxp3 gene in mice and humans, “have the primary function of pouring a cold shower on inflammatory responses,” explained Dr. Piccirillo. “They suppress and regulate the function of various immune responses to microbes, tumors, allergens and transplants.” While the diabetes-susceptible NOD mice actually generate normal numbers of Foxp3 T-cells over their lifetimes, Dr. Piccirillo and his colleagues discovered that the T-cells’ functional potency declined with age, leaving potential autoimmune responses in the pancreas unchecked.

It is likely, the researchers say, that certain genetic predispositions, coupled with the possible contribution of external environmental factors or infections, could potentially alter regulatory T-cell function in susceptible individuals and trigger a full-scale diabetic autoimmune reaction in the pancreas.

“Once they start, these immune responses are like a fire that goes unchecked by firemen, or a car going downhill without brakes,” said Dr. Piccirillo. Moreover, he said, this discovery not only elucidates the mechanism by which type 1 diabetes is triggered, but it also points the way to the development of new immune system-based therapies for a whole range of diseases.

“We believe that these regulatory cells may represent a kind of master switch, and by understanding how they are made, how they function and how they survive, we may be able to stop disease from occurring.”

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>