Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Overactive nerves in head and neck may account for 'ringing in the ears'

Results in animals suggest that acupuncture and trigger point therapy may be effective treatments for people plagued by tinnitus

Do your ears ring after a loud concert" Nerves that sense touch in your face and neck may be behind the racket in your brain, University of Michigan researchers say.

Touch-sensing nerve cells step up their activity in the brain after hearing cells are damaged, a study by U-M Kresge Hearing Research Institute scientists shows. Hyperactivity of these touch-sensing neurons likely plays an important role in tinnitus, often called “ringing in the ears.” The study, now online in the European Journal of Neuroscience, will appear in the journal’s first January issue.

The research findings were made in animals, but they suggest that available treatments such as acupuncture, if used to target nerves in the head and neck, may provide relief for some people plagued by tinnitus, says Susan E. Shore, Ph.D., lead author of the study and research professor in the Department of Otolaryngology and the Kresge Hearing Research Institute at the U-M Medical School.

People with tinnitus sense ringing or other sounds in their ears or head when there is no outside source. Whether it’s mild and intermittent or chronic and severe, tinnitus affects about one in 10 people. An estimated 13 million people in Western Europe and the United States seek medical advice for it. It is a growing problem for war veterans. Since 2000, the number of veterans receiving service-connected disability for tinnitus has increased by at least 18 percent each year, according to the American Tinnitus Association.

Increasing numbers of baby boomers are also finding that when they can’t hear as well as they used to, tinnitus seems to move in. The condition commonly occurs with hearing loss, but also after head or neck trauma such as whiplash or dental work.

Tinnitus varies in individuals from a faint, high-pitched tone to whooshing ocean waves to annoying cricket-like chirping or screeching brakes. For some, it is constant and debilitating.

Some people, oddly enough, find that if they clench the jaw or press on the face or neck, they can temporarily stop tinnitus, or in some cases bring it on. To understand tinnitus and its strange link to touch sensations, Shore and her research team have conducted a series of studies in guinea pigs, measuring nerve activity in a part of the brain called the dorsal cochlear nucleus that processes auditory and other signals.

In normal hearing, the dorsal cochlear nucleus is the first stop in the brain for sound signals arriving from the ear via the auditory nerve. It’s also a hub where “multitasking” neurons process sensory signals from other parts of the brain.

“In this study, we showed that when there is a hearing loss, other parts of the brain that normally convey signals to the cochlear nucleus have an enhanced effect,” says Shore, who is also an associate professor in the Department of Molecular and Integrative Physiology at the U-M Medical School.

“When you take one source of excitation away, another source comes in to make up for it. The somatosensory system is coming in, but may overcompensate and help cause tinnitis,” she says.

The somatosensory system is a nerve network in the body that provides information to the brain about touch, vibration, skin temperature and pain. The part of the system that provides sensations from the face and head, called the trigeminal system, brings signals to the cochlear nucleus that help us hear and speak.

But when people experience hearing loss or some other event, such as having a cavity filled or a tooth implanted, these neurons from the face and head can respond like overly helpful relatives in a family crisis. The resulting neuron firings in the cochlear nucleus, like too many phone calls, create the din of tinnitus, a “phantom sound” produced in the brain.

In the study, Shore and the paper’s second author Seth Koehler, a U-M Ph.D. student in the U-M departments of Otolaryngology and Biomedical Engineering measured the patterns of activity of neurons in the brains of normal and deafened guinea pigs. They used a 16-electrode array to measure signals from the trigeminal nerve and multisensory neurons in the dorsal cochlear nucleus. When they compared results in the two groups, they found clear differences in trigeminal nerve activity.

“The study shows that in deafened animals, the somatosensory response is much stronger than in animals with normal hearing,” Shore says.

Shore’s research team knew from earlier research that some neurons in the cochlear nucleus become hyperactive after hearing damage, and this hyperactivity has been linked to tinnitus in animals.

“This study shows that it is only those neurons that receive somatosensory input that become hyperactive,” she says, which should make the search for treatments for tinnitus in some people more straightforward.

Many people with temporomandibular joint syndrome (TMJ), a condition that causes frequent pain in the jaw, experience tinnitus. Shore’s research could lead to a better understanding of this link. In people with TMJ, the somatosensory system is disrupted and inflamed. Shore says that it’s possible that in this situation, as in hearing loss, somatosensory neurons stir excessive neuron activity in the cochlear nucleus.

Anne Rueter | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>