Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overactive nerves in head and neck may account for 'ringing in the ears'

14.01.2008
Results in animals suggest that acupuncture and trigger point therapy may be effective treatments for people plagued by tinnitus

Do your ears ring after a loud concert" Nerves that sense touch in your face and neck may be behind the racket in your brain, University of Michigan researchers say.

Touch-sensing nerve cells step up their activity in the brain after hearing cells are damaged, a study by U-M Kresge Hearing Research Institute scientists shows. Hyperactivity of these touch-sensing neurons likely plays an important role in tinnitus, often called “ringing in the ears.” The study, now online in the European Journal of Neuroscience, will appear in the journal’s first January issue.

The research findings were made in animals, but they suggest that available treatments such as acupuncture, if used to target nerves in the head and neck, may provide relief for some people plagued by tinnitus, says Susan E. Shore, Ph.D., lead author of the study and research professor in the Department of Otolaryngology and the Kresge Hearing Research Institute at the U-M Medical School.

People with tinnitus sense ringing or other sounds in their ears or head when there is no outside source. Whether it’s mild and intermittent or chronic and severe, tinnitus affects about one in 10 people. An estimated 13 million people in Western Europe and the United States seek medical advice for it. It is a growing problem for war veterans. Since 2000, the number of veterans receiving service-connected disability for tinnitus has increased by at least 18 percent each year, according to the American Tinnitus Association.

Increasing numbers of baby boomers are also finding that when they can’t hear as well as they used to, tinnitus seems to move in. The condition commonly occurs with hearing loss, but also after head or neck trauma such as whiplash or dental work.

Tinnitus varies in individuals from a faint, high-pitched tone to whooshing ocean waves to annoying cricket-like chirping or screeching brakes. For some, it is constant and debilitating.

Some people, oddly enough, find that if they clench the jaw or press on the face or neck, they can temporarily stop tinnitus, or in some cases bring it on. To understand tinnitus and its strange link to touch sensations, Shore and her research team have conducted a series of studies in guinea pigs, measuring nerve activity in a part of the brain called the dorsal cochlear nucleus that processes auditory and other signals.

In normal hearing, the dorsal cochlear nucleus is the first stop in the brain for sound signals arriving from the ear via the auditory nerve. It’s also a hub where “multitasking” neurons process sensory signals from other parts of the brain.

“In this study, we showed that when there is a hearing loss, other parts of the brain that normally convey signals to the cochlear nucleus have an enhanced effect,” says Shore, who is also an associate professor in the Department of Molecular and Integrative Physiology at the U-M Medical School.

“When you take one source of excitation away, another source comes in to make up for it. The somatosensory system is coming in, but may overcompensate and help cause tinnitis,” she says.

The somatosensory system is a nerve network in the body that provides information to the brain about touch, vibration, skin temperature and pain. The part of the system that provides sensations from the face and head, called the trigeminal system, brings signals to the cochlear nucleus that help us hear and speak.

But when people experience hearing loss or some other event, such as having a cavity filled or a tooth implanted, these neurons from the face and head can respond like overly helpful relatives in a family crisis. The resulting neuron firings in the cochlear nucleus, like too many phone calls, create the din of tinnitus, a “phantom sound” produced in the brain.

In the study, Shore and the paper’s second author Seth Koehler, a U-M Ph.D. student in the U-M departments of Otolaryngology and Biomedical Engineering measured the patterns of activity of neurons in the brains of normal and deafened guinea pigs. They used a 16-electrode array to measure signals from the trigeminal nerve and multisensory neurons in the dorsal cochlear nucleus. When they compared results in the two groups, they found clear differences in trigeminal nerve activity.

“The study shows that in deafened animals, the somatosensory response is much stronger than in animals with normal hearing,” Shore says.

Shore’s research team knew from earlier research that some neurons in the cochlear nucleus become hyperactive after hearing damage, and this hyperactivity has been linked to tinnitus in animals.

“This study shows that it is only those neurons that receive somatosensory input that become hyperactive,” she says, which should make the search for treatments for tinnitus in some people more straightforward.

Many people with temporomandibular joint syndrome (TMJ), a condition that causes frequent pain in the jaw, experience tinnitus. Shore’s research could lead to a better understanding of this link. In people with TMJ, the somatosensory system is disrupted and inflamed. Shore says that it’s possible that in this situation, as in hearing loss, somatosensory neurons stir excessive neuron activity in the cochlear nucleus.

Anne Rueter | EurekAlert!
Further information:
http://www.umich.edu
http://www.blackwell-synergy.com/doi/full/10.1111/j.1460-9568.2007.05983.x
http://www.tinnitusresearch.org/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>