Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food for Thought: delivering the promise of food processing

04.01.2008
Humans have transformed raw ingredients into food since prehistoric times. But scientists are still looking for new ways to make food taste better and survive longer. Presenting their findings at a recent European Science Foundation (ESF) and European Cooperation in the field of Scientific and Technical Research (COST) conference, scientists show how new food technologies are changing European diets.

The industrial revolution brought the advent of modern food processing technology. Whether you credit the Frenchman Nicholas Appert in 1809, or British born Peter Durand in 1810, the invention of the tin can has revolutionised the way people eat. The motivation behind its invention was simple – make food last long. Two hundred years on, food scientists are still trying to improve the shelf life of food.

For example, by introducing mixtures of oxygen, nitrogen and carbon dioxide into packaging, some fresh vegetables have had their life extended two- or three-fold. A similar approach is used in the packaging of meat, where gas is pumped into packaging, reducing oxygenation of the meats pigments, extending its shelf life.

But today’s food scientists have to consider more than just the use-by-date. “Europeans want food that is cheap, convenient, high quality, safe and more and more produced in a eco-friendly way,” explains Professor Brian McKenna, a food scientist at University College Dublin in Ireland. In addition, McKenna thinks that food plays a variety of roles in European society nowadays. “Food is important to peoples health as it is increasingly being linked to diseases such as obesity, coronary heart disease and diabetes,” he says. Furthermore, Europeans are now more aware of the cultural role of food in every day life. So food scientists must design technology that helps people get what they want from their food.

While increased interest over food can deliver more choice for consumers, it has also led to some misinformed debates. And Europeans have resisted many potentially useful technologies over unsubstantiated fears that they are not safe. “Nowadays, the public are much more sceptical, particularly when it come to food,” says McKenna. McKenna cites the example of using irradiation to kill pests and increase the shelf-life of mushrooms. But this process is confined to only a few countries within Europe, such as the Netherlands, despite a considerable amount of evidence that it is safe for humans.

McKenna thinks that food scientists must consider the public’s perception of new technologies or risk the rejection of these technologies. One example is nanotechnology—engineering at a very small scale. Nanotechnology is being used in medicine to deliver drugs to specific targets in the body. A similar approach could be used in food to deliver vitamins. However, there are currently no foods using nano-particles in this way in Europe. The use of nanotechnology in food has been slow because of public concern that nano-ingredients could reach parts of the body where they were never intended.

McKenna hopes that by understanding the socioeconomic, political, and cultural influences on what Europeans eat, food scientists can better advise policy makers about how food should be processed and packaged, and how it is sold and eventually eaten.

The conference, on November 5-6, was attended by 75 scientists and policy makers from 22 countries and was one of the series of research conferences organised by the ESF-COST Forward Look initiative. Forward Look, a flagship instrument of the ESF, allows scientists to meet people from the world of policy and help set priorities for future research.

This Forward Look is a multidisciplinary joint ESF/COST initiative, which involves the ESF Standing Committee for Life, Earth and Environmental Sciences (LESC), the ESF European Medical Research Councils (EMRC), the ESF Standing Committee for the Humanities (SCH), the ESF Standing Committee for the Social Sciences (SCSS) and the COST Domain Committee for Food and Agriculture (FA).

Contact
Astrid Lunkes, PhD
EUROCORES Programme Coordinator - Molecular Biology
Science Officer for Life, Earth & Environmental Sciences
European Science Foundation (ESF)
phone +33 3 88 76 21 72
FAX +33 3 88 37 05 32
email alunkes@esf.org

Astrid Lunkes | European Science Foundation (ESF
Further information:
http://www.esf.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>