Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of deep sleep may increase risk of type 2 diabetes

03.01.2008
Suppression of slow-wave sleep in healthy young adults significantly decreases their ability to regulate blood-sugar levels and increases the risk of type 2 diabetes, report researchers at the University of Chicago Medical Center in the “Early Edition” of the Proceedings of the National Academy of Science, available online as soon as Dec. 31, 2007.

Deep sleep, also called “slow-wave sleep,” is thought to be the most restorative sleep stage, but its significance for physical well-being has not been demonstrated. This study found that after only three nights of selective slow-wave sleep suppression, young healthy subjects became less sensitive to insulin. Although they needed more insulin to dispose of the same amount of glucose, their insulin secretion did not increase to compensate for the reduced sensitivity, resulting in reduced tolerance to glucose and increased risk for type 2 diabetes. The decrease in insulin sensitivity was comparable to that caused by gaining 20 to 30 pounds.

Previous studies have demonstrated that reduced sleep quantity can impair glucose metabolism and appetite regulation resulting in increased risk of obesity and diabetes. This current study provides the first evidence linking poor sleep quality to increased diabetes risk.

"These findings demonstrate a clear role for slow-wave sleep in maintaining normal glucose control," said the study's lead author, Esra Tasali, MD, assistant professor of medicine at the University of Chicago Medical Center. "A profound decrease in slow-wave sleep had an immediate and significant adverse effect on insulin sensitivity and glucose tolerance."

“Since reduced amounts of deep sleep are typical of aging and of common obesity-related sleep disorders, such as obstructive sleep apnea these results suggest that strategies to improve sleep quality, as well as quantity, may help to prevent or delay the onset of type 2 diabetes in populations at risk,” said Eve Van Cauter, PhD, professor of medicine at the University of Chicago and senior author of the study.

The researchers studied nine lean, healthy volunteers, five men and four women between the ages of 20 and 31. The subjects spent two consecutive nights in the sleep laboratory, where they went to bed at 11 P.M., slept undisturbed but carefully monitored, and got out of bed 8.5 hours later, at 7:30 A.M.

The same subjects were also studied for three consecutive nights during which they followed identical nighttime routines. During this session, however, when their brain waves indicated that they were drifting into slow-wave sleep they were subtly disturbed by sounds administered through speakers beside the bed.

These sounds were loud enough to disrupt deep sleep but not so loud as to cause a full awakening. This technique enabled the researchers to decrease slow-wave sleep by about 90 percent, shifting the subjects from the onset of deep sleep (stage 3 or 4) to a lighter sleep (stage 2) without altering total sleep time.

"Our system proved quite effective," Tasali said. When asked about the sounds the next morning, study subjects vaguely recalled hearing a noise "three or four times," during the night. Some recalled as many as 10 to 15. On average, however, subjects required about 250-300 interventions each night, fewer the first night but more on subsequent nights as "slow-wave pressure," the body's need for deep sleep, accumulated night after night.

"This decrease in slow-wave sleep resembles the changes in sleep patterns caused by 40 years of aging," Tasali said. Young adults spend 80 to 100 minutes per night in slow-wave sleep, while people over age 60 generally have less than 20 minutes. "In this experiment," she said, "we gave people in their 20s the sleep of those in their 60s."

At the end of each study, the researchers gave intravenous glucose (a sugar solution) to each subject, then took blood samples every few minutes to measure the levels of glucose and insulin, the hormone that controls glucose uptake.

They found that when slow-wave sleep was suppressed for only three nights, young healthy subjects became about 25 percent less sensitive to insulin. As insulin sensitivity decreased, subjects needed more insulin to dispose of the same amount of glucose. But for eight of the nine subjects, insulin secretion did not go up to compensate for reduced effects. The result was a 23 percent increase in blood-glucose levels, comparable to older adults with impaired glucose tolerance.

Those with low baseline levels of slow-wave sleep had the lowest levels after having their sleep patterns disrupted and the greatest decrease in insulin sensitivity.

The alarming rise in the prevalence of type 2 diabetes is generally attributed to the epidemic of obesity combined with the aging of the population. "Previous studies from our lab have demonstrated many connections between chronic, partial, sleep deprivation, changes in appetite, metabolic abnormalities, obesity, and diabetes risk," said Van Cauter. "These results solidify those links and add a new wrinkle, the role of poor sleep quality, which is also associated with aging."

"Chronic shallow non-REM sleep, decreased insulin sensitivity and elevated diabetes risk are typical of aging," the authors conclude. "Our findings raise the question of whether age-related changes in sleep quality contribute to the development of these metabolic alterations."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>