Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Translational research work has patented the first experimental treatment against idiopathic pulmonary fibrosis

31.12.2007
Idiopathic pulmonary fibrosis is a disease with unknown cause with a very severe prognosis; when detected, it is already in an advanced stage. Patients suffering from it cannot develop with normality pulmonary gas exchange, and have a very reduced quality of life.

Because of lack of an effective treatment, they rarely survive 5 years after being diagnosed. Idiopathic pulmonary fibrosis affects 13 out of 100,000 men and 7 out of 100,000 women, normally over 40 years of age. Researchers from the Biomedical Research Institute of Barcelona CSIC (IIBB-CSIC), a centre developing research in the framework of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), have discovered and patented a method to stop and revert this disease in an animal model. A clinical study will be soon conducted in humans in the Hospital Clínic de Barcelona.

Results of their research work are published in the last issue of the American Journal of Respiratory and Critical Care Medicine (176(12):1261-8). This study has had the collaboration of basic researchers, such as Dr. Anna Serrano-Mollar, and Dr. Oriol Bulbena, first and last signatories of the study; and researchers with a clinical background, such as Dr. Antoni Xaubet, from the Unit of Pneumology of the Hospital Clínic de Barcelona. This turns this work into a paradigm of translational research promoted in IDIBAPS and through other initiatives such as the Network of Centres of Biomedical Research (CIBERs). This research work has been financed through a contribution from the Fondo de Investigaciones Sanitarias (FIS) from the Instituto de Salud Carlos III.

Gas exchange is developed in lungs thanks to type 1 pneumocytes in alveoli, cells recovering the inner walls of the alveolar cavity. Occupying the same spaces, there are also type II pneumocytes, precursor cells that repair the damaged alveolar tissue. When idiopathic pulmonary fibrosis appears, this regeneration process cannot be developed correctly and fibrosis advances until respiration is impossible. The technique developed by researchers from the IIBB-CSIC-IDIBAPS consists in a transplantation of type II pneumocytes via intratracheal. In order to monitor correctly the transplanted cells with genetic and fluorescence techniques, sexual chromosomal differences were used. Thus, the disease was induced in female rats, and cells from male rats were transplanted. This is a lowly invasive technique which has permitted to regenerate, for the first time, rat fibrotic alveoli where idiopathic pulmonary fibrosis was induced.

CSIC has patented as a treatment the cell suspension transplanted with this innovative strategy. The world patent will be proved in humans with a clinical study, soon conducted in the Hospital Clínic de Barcelona thanks to the financing of the Fundación Genoma España and CSIC This study will have the participation of 6 recently diagnosed patients who will receive a suspension of type II pneumocytes coming from a dead donor, since these cells cannot be cultured in the laboratory. All this events throw new and hopeful light into basic and clinical research lines. One of the following steps of researchers will be to try to obtain type II pneumocytes from adult stem cells.

Àlex Argemí Saburit | alfa
Further information:
http://www.clinic.ub.es

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>