Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why Don't We Get Cancer All The Time?

The seemingly inefficient way our bodies replace worn-out cells is a defense against cancer, according to new research.

Having the neighboring cell just split into two identical daughter cells would seem to be the simplest way to keep bodies from falling apart.

However that would be a recipe for uncontrolled growth, said John W. Pepper of The University of Arizona in Tucson.

"If there were only one cell type in the group, it would act like an evolving population of cells. Individual cells would get better and better at surviving and reproducing," said Pepper, a UA assistant professor of ecology and evolutionary biology and a member of UA's BIO5 Institute.

"When cells reach the point where they divide constantly, instead of only when needed, they are cancer cells."

Instead, multicellular organisms use a seemingly inefficient process to replace lost cells, Pepper said. An organ such as the skin calls upon skin-specific stem cells to produce intermediate cells that in turn produce skin cells.

Although great at their job, the new skin cells are evolutionary dead ends.
The cells cannot reproduce.
Losing the ability to reproduce was part of the evolutionary path single-celled organisms had to take to become multicellular, Pepper said.

What was in it for the single cells?

"Probably they got to be part of something more powerful," Pepper said.
"Something that was hard to eat and good at eating other things."
Pepper and his colleagues published their paper, "Animal Cell Differentiation Patterns Suppress Somatic Evolution," in the current issue of PLoS Computational Biology. Pepper's co-authors are Kathleen Sprouffske of the University of Pennsylvania in Philadelphia and the Wistar Institute in Philadelphia and Carlo C. Maley of the Wistar Institute.

The National Institutes of Health, the Pennsylvania Department of Health, the Pew Charitable Trust and the Santa Fe Institute funded the research.

Pepper became curious about the origins of cooperation between cells while he was a postdoctoral fellow at the Santa Fe Institute in New Mexico.

"Organisms are just a bunch of cells," he said.

"If you understand the conditions under which they cooperate, you can understand the conditions under which cooperation breaks down. Cancer is a breakdown of cooperation."

Pepper and his colleagues used a kind of computer model called an agent-based model to compare different modes of cellular reproduction.

The results indicate that if cells reproduce by simply making carbon-copies of themselves, the cells' descendants are more likely to accumulate mutations.

In contrast, if cellular reproduction was much more complicated, the cells'
descendants had fewer mutations.
Suppressing mutations that might fuel uncontrolled growth of cells would be particularly important for larger organisms that had long lives, the team wrote in their research report.
Researcher contact info:
John Pepper, 520-626-0440

Mari N. Jensen | The University of Arizona
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>