Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Don't We Get Cancer All The Time?

20.12.2007
The seemingly inefficient way our bodies replace worn-out cells is a defense against cancer, according to new research.

Having the neighboring cell just split into two identical daughter cells would seem to be the simplest way to keep bodies from falling apart.

However that would be a recipe for uncontrolled growth, said John W. Pepper of The University of Arizona in Tucson.

"If there were only one cell type in the group, it would act like an evolving population of cells. Individual cells would get better and better at surviving and reproducing," said Pepper, a UA assistant professor of ecology and evolutionary biology and a member of UA's BIO5 Institute.

"When cells reach the point where they divide constantly, instead of only when needed, they are cancer cells."

Instead, multicellular organisms use a seemingly inefficient process to replace lost cells, Pepper said. An organ such as the skin calls upon skin-specific stem cells to produce intermediate cells that in turn produce skin cells.

Although great at their job, the new skin cells are evolutionary dead ends.
The cells cannot reproduce.
Losing the ability to reproduce was part of the evolutionary path single-celled organisms had to take to become multicellular, Pepper said.

What was in it for the single cells?

"Probably they got to be part of something more powerful," Pepper said.
"Something that was hard to eat and good at eating other things."
Pepper and his colleagues published their paper, "Animal Cell Differentiation Patterns Suppress Somatic Evolution," in the current issue of PLoS Computational Biology. Pepper's co-authors are Kathleen Sprouffske of the University of Pennsylvania in Philadelphia and the Wistar Institute in Philadelphia and Carlo C. Maley of the Wistar Institute.

The National Institutes of Health, the Pennsylvania Department of Health, the Pew Charitable Trust and the Santa Fe Institute funded the research.

Pepper became curious about the origins of cooperation between cells while he was a postdoctoral fellow at the Santa Fe Institute in New Mexico.

"Organisms are just a bunch of cells," he said.

"If you understand the conditions under which they cooperate, you can understand the conditions under which cooperation breaks down. Cancer is a breakdown of cooperation."

Pepper and his colleagues used a kind of computer model called an agent-based model to compare different modes of cellular reproduction.

The results indicate that if cells reproduce by simply making carbon-copies of themselves, the cells' descendants are more likely to accumulate mutations.

In contrast, if cellular reproduction was much more complicated, the cells'
descendants had fewer mutations.
Suppressing mutations that might fuel uncontrolled growth of cells would be particularly important for larger organisms that had long lives, the team wrote in their research report.
Researcher contact info:
John Pepper, 520-626-0440
jpepper1@email.arizona.edu

Mari N. Jensen | The University of Arizona
Further information:
http://eebweb.arizona.edu/Faculty/Bios/pepper.html
http://www.santafe.edu/profiles/?pid=110

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>