Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers hope to provide chronic fatigue syndrome answers

19.12.2007
New kinesiology research hopes to provide definitive test for CFS
One of the most difficult things for people suffering from Chronic Fatigue Syndrome (CFS) is that many believe the condition to be a psychological, not physical affliction.

New research by the Faculty of Kinesiology hopes to measure one of the syndrome’s most obvious symptoms — information that could help doctors in the diagnosis CFS.

“Diagnosis of the syndrome, generally follows eliminating every other possible cause, which leads some to speculate that the condition isn’t real,” says Dr. Brian MacIntosh. “One thing we know is that CFS sufferers feel profound fatigue and worsening of other symptoms following even moderate physical activity. Using our expertise in the field of exercise physiology we believe we can measure this post exertion malaise and say with certainty if an individual has recovered from exercise or if that activity is making them even more fatigued.”

MacIntosh, who is the Faculty of Kinesiology’s Associate Dean of Graduate Studies, is an expert in the area of muscle fatigue. Much of his research has centered on high-performance athletes in peak physical condition, however he says that this research fits in well with his overall area of interest.

“The tools we have developed in high performance sport are perfectly suited to track muscle fatigue in this application so without question we will be able to get some concrete answers,” he says.

The research trial will put CFS patients on a stationary bike to perform a VO2 Max test – similar to trials used to evaluate the fitness level of professional athletes. The individual will pedal to the point of fatigue, at which point researchers will take several measurements including a blood sample in which lactate will be quantified. The next day the patient will return and follow the same workout protocol.

“Most healthy individuals should be able to easily match their performance from the previous day,” MacIntosh explains. “Since CFS patients by definition report profound fatigue from even moderate physical exertion and take greater than 24 hours to recover, we would expect to see a decrease in their physical performance and we should be able to measure that in several ways.”

This work may shed some light on whether the fatigue experienced by people with CFS is primarily in the muscles or in the nervous system. MacIntosh believes that the results of this work could lead to a definitive diagnosis of CFS, giving another tool in the otherwise limited toolbox of diagnostic tests and perhaps, more importantly, shed some light on the broader issue of human muscle fatigue.

“We've all experienced fatigue in our lives," says MacIntosh. "For example when we have the flu or any similar illness, we feel that fatigue makes our arms and legs feel like they’re made of lead... I’m hoping that this research may lead to a greater understanding of human muscle fatigue in general.”

Don McSwiney | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.kin.ucalgary.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>