Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria that cause urinary tract infections invade bladder cells

19.12.2007
Scientists at Washington University School of Medicine in St. Louis have found definitive proof that some of the bacteria that plague women with urinary tract infections (UTIs) are entrenched inside human bladder cells.

The finding confirms a controversial revision of scientists' model of how bacteria cause UTIs. Previously, most researchers assumed that the bacteria responsible for infections get into the bladder but do not invade the individual cells that line the interior of the bladder.

"Our animal model of UTIs has allowed us to make a number of predictions about human UTIs, but at the end of the day, we felt it was critical to show this in humans, and now we've done just that," says senior author Scott J. Hultgren, Ph.D., the Helen L. Stoever Professor of Molecular Microbiology at the School of Medicine.

The results appear in the December issue of Public Library of Science Medicine.

Fully understanding what bacteria do in the bladder is critical to developing better diagnoses and treatments for UTIs, Hultgren says. The bacterium Escherchia coli is thought to be responsible for 80 percent to 90 percent of UTIs, which occur mainly in women and are one of the most common bacterial infections in the United States. Scientists estimate that more than half of all women will experience a UTI in their lifetimes, and recurrent UTIs will affect 20 percent to 40 percent of those patients.

"Recurrence is one of the biggest problems of UTIs," says Hultgren. "Even though we have treatments that eliminate the acute symptoms, the fact that the disease keeps recurring in so many women tells me that we need to develop better treatments."

Prior to the work of Hultgren and his colleagues, most microbiologists and urologists believed for a variety of reasons that E. coli wasn't getting into bladder cells.

"For example, there is a barrier in the bladder that prevents toxins and other things in your urine from leaking back into the body," notes David Rosen, an M.D./Ph.D. student at the School of Medicine and lead author of the paper. "And it was thought that bacteria could not penetrate that barrier."

A biopsy could reveal the presence of bacteria in bladder cells, but taking a tissue sample in an infected bladder incurs an unacceptable risk of allowing bacteria to spread into the bloodstream, a dangerous condition called sepsis.

Scientists also thought that if the bacteria were getting into bladder cells, they would replicate and spread rapidly, sometimes leading to sepsis. But after Hultgren first discovered that bacteria are able to invade bladder cells in 1998, he later found evidence in his animal model that bacteria could establish residence inside those cells. He showed that this process involved several behavioral changes that allow the bacteria to form cooperative communities known as biofilms. By working together, bacteria in biofilms build themselves into structures that are more firmly anchored in infected cells and are more resistant to immune system assaults and antibiotic treatments.

To prove that the model correlates with human infections, Rosen led an analysis of human urine samples sent from a clinic at the University of Washington in Seattle. The 100 patients who gave samples were either suffering from an active, symptomatic infection or had previously suffered infections. Researchers analyzing the specimens were not told which group of patients individual specimens had come from.

Using light and electron microscopy and immunofluoresence, scientists found signs of bladder cell infection in a significant portion of the samples from patients with active UTIs. These included cells enlarged by bacterial infection and shed from the lining of the bladder.

In addition, Hultgren's experiments had previously suggested that some bacteria progress to a filament-like shape when exiting out of the biofilm. Rosen was able to identify bacteria with this filamentous morphology in 41 percent of samples from patients with symptomatic UTIs.

Neither indicator was detected in urine from women who did not have active infections. This was anticipated: Hultgren's animal model work suggests that when women are between episodes of symptomatic infection, intracellular E. coli may be in dormant phases where there would be little cause for bacteria or the cells they infect to be shed into the urine.

Further research is needed to determine if the infection indicators Rosen detected in urine samples from symptomatic women are signs of increased risk of recurrent infection. But looking for those signs using immunofluorescent staining and a variety of microscopy methods is unlikely to be practical on a widespread clinical basis. So to follow up, Hultgren plans a search for biochemical indicators linked to higher risk of recurrent UTIs and of infection spreading to a patient's kidneys. His lab also continues to be involved in many different efforts to develop new vaccines and treatments.

"What we're learning about how bacteria behave in the bladder may also have application to other chronic, treatment-resistant infections such as sinus infections and ear infections," he says. "We're increasingly starting to realize that biofilm formation is generally an important strategy bacteria use to evade host responses and antibiotic therapies. Attacking biofilms is going to be a really important approach as we enter a new era of fighting infectious diseases."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>