Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge success with directly loaded implants in the mouth

14.12.2007
In the near future toothless patients will no longer have to wait several months for ordinary titanium implants to heal. Nearly every one of 450 patients who had bridges anchored in their implants had immediate success. This is reported in a dissertation from the Sahlgrenska Academy in Sweden.

Most patients who have titanium implants in their mouth have to wait between four and seven months before the implant is considered stable enough for crowns or bridges to be secured in the screw.

"Many people feel physically and psychologically handicapped by their toothlessness, and it would mean a great deal to patients if they didn't have to wait so long for the treatment to be completed," says Pär-Olov Östman, the dentist who authored the dissertation.

The studies used the same type of dental implants that normally need to heal properly before they can be loaded. A total of 457 patients had bridges anchored in their implants within 24 hours of receiving the implant. When the patients were followed up more than a year after treatment, 98 percent of all direct-loaded implants in the lower jaw were successful. In upper jaws that were previously completely toothless, 99 percent of the treatments succeeded.

"To attain such results the dentist has to do a good job, and there are several factors to take into consideration before choosing to immediately load the implant. I would say that several more years of research is needed before directly loaded implants can be the normal treatment for toothlessness," says Pär-Olov Östman.

All types of dental implants are not suitable for direct loading, however. For patients who received Nobel Direct implants, many of the treatments failed.

There are patients who cannot take a direct-load implant. The dissertation shows that these patients can be given an extra temporary implant that is smaller and narrower than the permanent one and can be used to secure prostheses while the permanent implant heals. Pär-Olov Östman also developed a rapid method for dentists to create temporary bridges on implants in the mouth.

"It takes only a half hour for the dentist to create a temporary bridge. It's fast, and it's a lot cheaper for the patient than the robust bridges that dental laboratories produce, but they don't hold up quite as well," says Pär-Olov Östman.

FACTS ABOUT DENTAL IMPLANTS

The implant is a kind of artificial tooth root made of titanium. The titanium screw is operated into the jawbone and heals there for use as an anchor for crowns, bridges, and prostheses. The method was devised by Professor Per-Ingvar Brånemark at the Sahlgrenska Academy in the 1960s. There are several types of titanium fixtures, but they are all based on the fact that titanium metal has the unique capacity to integrate with bone.

Dissertation for doctoral degree in odontology at the Sahlgrenska Academy, Department of Clinical Sciences, Section for Biomaterials Science
Title of dissertation: On various protocols for direct loading of implant-supported fixed prostheses

The dissertation will be publicly defended on Friday, December 21, at 1:00 p.m., Section for Biomaterials Science, Medicinaregatan 8B, 4th floor, Göteborg.

For more information, please contact: Pär-Olov Östman, DDS, cell phone: +46 (0)70-247 89 50, e-mail: po@holmgatan.se Supervisor: Professor Lars Sennerby, phone: +46 (0)31-786 29 65, e-mail: lars.sennerby@biomaterials.gu.se

Elin Lindström Claessen | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>