Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New improved diagnostic marker for severe blood cancer

13.12.2007
Mantle cell lymphoma is an aggressive form of blood cancer that most commonly afflicts older men. Accurate and early diagnosis is crucial to select an optimal treatment and to increase the chances for survival. A research team at Lund University has now found a novel way to diagnose mantle cell lymphomas (MCL).

The novel approach that will be tested in the routine diagnosis of lymphoma in the Department of Pathology is based on a new biomarker, i.e., a factor that is specific for a certain disease. The discovery is a result of research within CREATE Health, a Center for Translational Cancer Research supported by the Foundation for Strategic Research and the Wallenberg Foundation.

CREATE Health has integrated investigators from the faculties of medicine, engineering, and natural sciences together with clinical oncologists from the university hospital. The overall aim is to identify proteins and genes that can be used as biomarkers for cancer, using emerging advanced technologies. Several very promising projects are under development, but the novel diagnostic approach for MCL has advanced the furthest. Scientist Sara Ek and colleagues have by studying more than 50,000 gene fragments found those that are specifically overexpressed in this disease. She has also identified the corresponding proteins and it is one of these proteins that serves as a specific biomarker.

- In a collaboration with pathologists, we are now studying the biomarker to see if it can be used as a novel routine test for this aggressive blood cancer. In a longer perspective, knowledge about the function of these disease-specific proteins can also lead to novel therapeutic modalities for blood cancer, explains professor Carl Borrebaeck, program director for CREATE Health.

Dr. Michael Dictor, pathologist at Lund University Hospital agrees.
- The biomarker Sox11 has shown to be a very sensitive and specific marker for MCL in addition to providing new information on how the disease might arise.

Ingela Bjoerck | alfa
Further information:
http://www.createhealth.lth.se

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>