Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could regulating intestinal inflammation prevent colon cancer?

17.03.2010
MUHC /McGill research team demonstrate for the first time the important role of two proteins in the process of inflammation and colon cancer

Every day, our gut comes in contact with bacteria, inducing a basal inflammatory response that is tolerated and highly controlled. However, in some cases the control of inflammation is lost and this can lead to inflammatory bowel disease that may predispose to colon cancer.

Caspase-1, an important protein involved in the mechanism of inflammation, has long been believed to be one of the culprits behind excessive inflammation in the colon. Dr. Maya Saleh, a researcher at the MUHC Research Institute, and her colleagues suggest the opposite in their new study.

The MUHC/McGill researchers have demonstrated that Caspase-1 plays a crucial role in inflammation regulation and intestinal tissue repair. But too much of any good thing can sometimes be bad. They also demonstrated that if Caspase-12--the protein that blocks Caspase-1--is absent, the inflammation mechanism caused by Caspase-1 goes out of control. Their findings, which were published in the journal Immunity, open the door to a greater understanding of and more targeted treatment strategy for preventing diseases linked to inflammation of the intestine as well as certain cancers.

This discovery is of major interest from the therapeutic point of view because many pharmaceutical companies have developed Caspase-1 inhibitors since the late 1990s with the goal of relieving the symptoms of colitis. However, Dr. Saleh’s team observed that inhibition or deletion of Caspase-1 was not protective and actually caused an intense inflammatory reaction that led to severe colitis.

“Caspase-1 is needed to maintain the intestinal barrier and to repair it if injured. It works by stimulating the cells that line the intestinal barrier to proliferate and fill the site of damage or ulcer. This barrier shields us from the bacteria that colonize our gut,” explains Dr. Saleh. “Without it, these bacteria invade to deeper tissues and trigger a persistent inflammation.”

According to Dr. Saleh, the absence of Caspase-12 leads to uncontrolled cell proliferation and higher risk of colorectal cancer. “If Caspase-1 is not eventually blocked, it could lead to appearance of tumours,” she says. “Our challenge at present is to further our research on the action of Caspases in the immune response and also to see whether they play a role in other types of cancer.”

Dr. Maya Saleh is a researcher in the Division of Intensive Care at the Research Institute of the McGill University Health Centre (MUHC), and an Assistant Professor in the Faculty of Medicine, McGill University.

About the Study
The article “Control of Intestinal Homeostasis, Colitis, and Colitis-Associated Colorectal Cancer by the Inflammatory Caspases,” published in the journal Immunity, was authored by Jeremy Dupaul-Chicoine, Garabet Yeretssian, Karine Doiron, Philippe M. LeBlanc, Christian R. McIntire, and Maya Saleh from the RI MUHC and McGill University, Charles Meunier, Claire Turbide, Nicole Beauchemin and Philippe Gros, from McGill University and Kirk S.B. Bergstrom and Bruce A. Vallance from the University of British Columbia and BC Children’s Hospital.
Funding
This study was made possible by grants from the Canadian Institutes of Health Research, the Burroughs Wellcome Foundation, the CHILD Foundation and the Canadian Society for Immunology.
On the Web
· MUHC Research Institute: www.muhc.ca/research/dashboard
· McGill University Health Centre: www.muhc.ca/
· McGill University: www.mcgill.ca/
· Immunity journal: www.cell.com/immunity/newarticles
Media contact
Julie Robert
Communications Coordinator (Research)
Public Affairs and Strategic Planning, MUHC
Phone: 514 934-1934 ext. 71381
E-mail: julie.robert@muhc.mcgill.ca

Julie Robert | MUHC
Further information:
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>