Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Could regulating intestinal inflammation prevent colon cancer?

MUHC /McGill research team demonstrate for the first time the important role of two proteins in the process of inflammation and colon cancer

Every day, our gut comes in contact with bacteria, inducing a basal inflammatory response that is tolerated and highly controlled. However, in some cases the control of inflammation is lost and this can lead to inflammatory bowel disease that may predispose to colon cancer.

Caspase-1, an important protein involved in the mechanism of inflammation, has long been believed to be one of the culprits behind excessive inflammation in the colon. Dr. Maya Saleh, a researcher at the MUHC Research Institute, and her colleagues suggest the opposite in their new study.

The MUHC/McGill researchers have demonstrated that Caspase-1 plays a crucial role in inflammation regulation and intestinal tissue repair. But too much of any good thing can sometimes be bad. They also demonstrated that if Caspase-12--the protein that blocks Caspase-1--is absent, the inflammation mechanism caused by Caspase-1 goes out of control. Their findings, which were published in the journal Immunity, open the door to a greater understanding of and more targeted treatment strategy for preventing diseases linked to inflammation of the intestine as well as certain cancers.

This discovery is of major interest from the therapeutic point of view because many pharmaceutical companies have developed Caspase-1 inhibitors since the late 1990s with the goal of relieving the symptoms of colitis. However, Dr. Saleh’s team observed that inhibition or deletion of Caspase-1 was not protective and actually caused an intense inflammatory reaction that led to severe colitis.

“Caspase-1 is needed to maintain the intestinal barrier and to repair it if injured. It works by stimulating the cells that line the intestinal barrier to proliferate and fill the site of damage or ulcer. This barrier shields us from the bacteria that colonize our gut,” explains Dr. Saleh. “Without it, these bacteria invade to deeper tissues and trigger a persistent inflammation.”

According to Dr. Saleh, the absence of Caspase-12 leads to uncontrolled cell proliferation and higher risk of colorectal cancer. “If Caspase-1 is not eventually blocked, it could lead to appearance of tumours,” she says. “Our challenge at present is to further our research on the action of Caspases in the immune response and also to see whether they play a role in other types of cancer.”

Dr. Maya Saleh is a researcher in the Division of Intensive Care at the Research Institute of the McGill University Health Centre (MUHC), and an Assistant Professor in the Faculty of Medicine, McGill University.

About the Study
The article “Control of Intestinal Homeostasis, Colitis, and Colitis-Associated Colorectal Cancer by the Inflammatory Caspases,” published in the journal Immunity, was authored by Jeremy Dupaul-Chicoine, Garabet Yeretssian, Karine Doiron, Philippe M. LeBlanc, Christian R. McIntire, and Maya Saleh from the RI MUHC and McGill University, Charles Meunier, Claire Turbide, Nicole Beauchemin and Philippe Gros, from McGill University and Kirk S.B. Bergstrom and Bruce A. Vallance from the University of British Columbia and BC Children’s Hospital.
This study was made possible by grants from the Canadian Institutes of Health Research, the Burroughs Wellcome Foundation, the CHILD Foundation and the Canadian Society for Immunology.
On the Web
· MUHC Research Institute:
· McGill University Health Centre:
· McGill University:
· Immunity journal:
Media contact
Julie Robert
Communications Coordinator (Research)
Public Affairs and Strategic Planning, MUHC
Phone: 514 934-1934 ext. 71381

Julie Robert | MUHC
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>