Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Red alert: Body kills 'spontaneous' blood cancers on a daily basis

Immune cells undergo 'spontaneous' changes on a daily basis that could lead to cancers if not for the diligent surveillance of our immune system, Melbourne scientists have found.

The research team from the Walter and Eliza Hall Institute found that the immune system was responsible for eliminating potentially cancerous immune B cells in their early stages, before they developed into B-cell lymphomas (also known as non-Hodgkin's lymphomas). The results of the study were published today in the journal Nature Medicine.

This immune surveillance accounts for what researchers at the institute call the 'surprising rarity' of B-cell lymphomas in the population, given how often these spontaneous changes occur. The discovery could lead to the development of an early-warning test that identifies patients at high risk of developing B-cell lymphomas, enabling proactive treatment to prevent tumours from growing.

Dr Axel Kallies, Associate Professor David Tarlinton, Dr Stephen Nutt and colleagues made the discovery while investigating the development of B-cell lymphomas.

Dr Kallies said the discovery provided an answer to why B-cell lymphomas occur in the population less frequently than expected. "Each and every one of us has spontaneous mutations in our immune B cells that occur as a result of their normal function," Dr Kallies said. "It is then somewhat of a paradox that B cell lymphoma is not more common in the population.

"Our finding that immune surveillance by T cells enables early detection and elimination of these cancerous and pre-cancerous cells provides an answer to this puzzle, and proves that immune surveillance is essential to preventing the development of this blood cancer."

B-cell lymphoma is the most common blood cancer in Australia, with approximately 2800 people diagnosed each year and patients with a weakened immune system are at a higher risk of developing the disease.

The research team made the discovery while investigating how B cells change when lymphoma develops. "As part of the research, we 'disabled' the T cells to suppress the immune system and, to our surprise, found that lymphoma developed in a matter of weeks, where it would normally take years," Dr Kallies said. "It seems that our immune system is better equipped than we imagined to identify and eliminate cancerous B cells, a process that is driven by the immune T cells in our body."

Associate Professor Tarlinton said the research would enable scientists to identify pre-cancerous cells in the initial stages of their development, enabling early intervention for patients at risk of developing B-cell lymphoma.

"In the majority of patients, the first sign that something is wrong is finding an established tumour, which in many cases is difficult to treat" Associate Professor Tarlinton said. "Now that we know B-cell lymphoma is suppressed by the immune system, we could use this information to develop a diagnostic test that identifies people in early stages of this disease, before tumours develop and they progress to cancer. There are already therapies that could remove these 'aberrant' B cells in at-risk patients, so once a test is developed it can be rapidly moved towards clinical use."

The research project was supported by the Australian National Health and Medical Research Council, Australian Research Council, Cancer Council Victoria, Leukaemia Foundation of Australia and the Victorian Government.

Penny Fannin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Antioxidants cause malignant melanoma to metastasize faster
09.10.2015 | University of Gothenburg

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>