Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recurring memory traces boost long-lasting memories

05.12.2013
While the human brain is in a resting state, patterns of neuronal activity which are associated to specific memories may spontaneously reappear.

Such recurrences contribute to memory consolidation – i.e. to the stabilization of memory contents. Scientists of the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn are reporting these findings in the current issue of “The Journal of Neuroscience”.

The researchers headed by Nikolai Axmacher performed a memory test on a series of persons while monitoring their brain activity by functional magnetic resonance imaging (fMRI). The experimental setup comprised several resting states including a nap inside a neuroimaging scanner. The study indicates that resting periods can generally promote memory performance.

Depending on one’s mood and activity different regions are active in the human brain. Perceptions and thoughts also influence this condition and this results in a pattern of neuronal activity which is linked to the experienced situation. When it is recalled, similar patterns, which are slumbering in the brain, are reactivated. How this happens, is still largely unknown.

The prevalent theory of memory formation assumes that memories are stored in a gradual manner. At first, the brain stores new information only temporarily. For memories to remain in the long term, a further step is required. „We call it consolidation“, Dr. Nikolai Axmacher explains, who is a researcher at the Department of Epileptology of the University of Bonn and at the Bonn site of the DZNE. “We do not know exactly how this happens. However, studies suggest that a process we call reactivation is of importance. When this occurs, the brain replays activity patterns associated with a particular memory. In principle, this is a familiar concept. It is a fact that things that are actively repeated and practiced are better memorized. However, we assume that a reactivation of memory contents may also happen spontaneously without there being an external trigger.”

A memory test inside the scanner

Axmacher and his team tested this hypothesis in an experiment that involved ten healthy participants with an average age of 24 years. They were shown a series of pictures, which displayed – among other things – frogs, trees, airplanes and people. Each of these pictures was associated with a white square as a label at a different location. The subjects were asked to memorize the position of the square. At the end of the experiment all images were shown again, but this time without the label. The study participants were then asked to indicate with a mouse cursor where the missing mark was originally located. Memory performance was measured as the distance between the correct and the indicated position.

“This is an associative task. Visual and spatial perceptions have to be linked together”, the researcher explains. “Such tasks involve several brain regions. These include the visual cortex and the hippocampus, which takes part in many memory processes.”

Brain activity was recorded by fMRI during the entire experiment, which lasted several hours and included resting periods and a nap inside the neuroimaging scanner.

Recurrent brain patterns increased the accuracy

For data processing a pattern recognition algorithm was trained to look for similarities between neuronal patterns observed during initial encoding and patterns appearing at later occasions. “This method is complex, but quite effective”, Axmacher says. “Analysis showed that neuronal activity associated with images that were shown initially did reappear during subsequent resting periods and in the sleeping phase.”

Memory performance correlated with the replay of neuronal activity patterns. “The more frequently a pattern had reappeared, the more accurate test participants could label the corresponding image”, Axmacher summarizes the findings. “These results support our assumption that neural patterns can spontaneously reappear and that they promote the formation of long-lasting memory contents. There was already evidence for this from animal studies. Our experiment shows that this phenomenon also happens in humans.”

Memory performance benefits from resting periods

The study indicates that resting periods can generally foster memory performance. “Though, our data did not show whether sleeping had a particular effect. This may be due to the experimental setup, which only allowed for a comparatively short nap”, Axmacher reckons. “By contrast, night sleep is considered to be beneficial for the consolidation of memory contents. But it usually takes many hours and includes multiple transitions between different stages of sleep. However, other studies suggest that even short naps may positively affect memory consolidation.”

An objective look at memory contents

It is up to speculation whether the recurring brain patterns triggered conscious memories or whether they remained below the threshold of perception. “I think it is reasonable to assume that during resting periods the test participants let their mind wander and that they recalled images they had just seen before. But this is a matter of subjective perception of the test participants. That’s something we did not look at because it is not essential for our investigation“, Axmacher says. “The strength of our approach lies rather in the fact that we look at memory contents from the outside, in an objective manner. And that we can evaluate them by pattern recognition. This opens ways to many questions of research. For example, brain patterns that reoccur spontaneously are also of interest in the context of experimental dream research.”

Original publication
“Memory consolidation by replay of stimulus-specific neural activity”, The Journal for Neuroscience, published on December 4, 2013, doi: 10.1523/JNEUROSCI.0414-13.2013 http://www.jneurosci.org/content/33/49/19373

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en/about-us/public-relations/meldungen/2013/press-release-no-35.html

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>