Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recognizing blood poisoning quickly

01.12.2011
Speed can save lives – especially in the case of blood poisoning. The more quickly and directly doctors recognize and treat sepsis, the greater the patient’s chances of survival. With the help of a new biochip, physicians will now be able to analyze blood within their own practice.

Is the patient suffering from blood poisoning? To answer this question, the doctor draws a blood sample and sends it to a central laboratory for testing. This takes up valuable time, which could cost the patient his life. In future, physicians will be able to analyze blood there and then and have the results within twenty minutes.


The biochip is analyzed in a fully automatic portable device. Physicians find out right away if the patient suffers from blood poisoning. © Fraunhofer IPM

This is made possible by a biochip, developed by scientists at the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg. “To analyze the biochip we have also designed a fully automatic device to carry out all the examination steps,” explains Dr. Albrecht Brandenburg, group manager at the IPM. “All the doctor has to do is place the sample in the apparatus and wait for the results.”

Meanwhile, within the device there’s plenty going on: it starts by preparing the blood sample. Red blood cells are separated from the blood and the plasma that remains is guided onto the biochip. When patients are suffering from sepsis, their immune system reacts by producing certain proteins. The biochip uses these in its diagnosis: there are antibodies positioned on the chip which fit these proteins like a key fits a lock. If the proteins are present in the blood, the antibodies fish them out of the fluid and bind them to the chip. But how does the apparatus know if proteins have been caught? “The chip is rinsed with a solution containing the appropriate antibodies, which have in turn been marked with a fluorescent dye,” explains IPM scientist Dr. Manuel Kemmler. “These bind to the proteins – meaning antibodies, protein and marked antibodies are all firmly linked to each other and to the chip’s surface. When the chip is illuminated, the dye lights up.” The apparatus sees lots of little illuminated dots that show the protein was in the blood. If the patient is healthy, however, the chip remains dark.

The researchers can even test for different proteins at the same time in one cycle. This is done by placing various different catcher molecules on the chip, to which specific molecules in the blood attach themselves. A cunning selection of proven protein markers allows the scientists to obtain additional important information about the severity and cause of the illness.

Together with colleagues from a university hospital, the researchers have already successfully tested prototypes of the device and biochip. Each biochip can only be used once – so they have to be affordable. “We predict that in the long run, with production on a large enough scale, each chip will cost no more than one euro,” says Brandenburg. There are various possible applications: other conditions such as heart attacks or cancers can also be investigated this way. What’s more, the chip facilitates doping and urine testing as well as the quality assessment of foodstuffs.

Dr. Albrecht Brandenburg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/recognizing-blood-poisoning-quickly.html

Further reports about: Biochip Sepsis blood cell blood poisoning blood sample red blood cells

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>