Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recognizing blood poisoning quickly

01.12.2011
Speed can save lives – especially in the case of blood poisoning. The more quickly and directly doctors recognize and treat sepsis, the greater the patient’s chances of survival. With the help of a new biochip, physicians will now be able to analyze blood within their own practice.

Is the patient suffering from blood poisoning? To answer this question, the doctor draws a blood sample and sends it to a central laboratory for testing. This takes up valuable time, which could cost the patient his life. In future, physicians will be able to analyze blood there and then and have the results within twenty minutes.


The biochip is analyzed in a fully automatic portable device. Physicians find out right away if the patient suffers from blood poisoning. © Fraunhofer IPM

This is made possible by a biochip, developed by scientists at the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg. “To analyze the biochip we have also designed a fully automatic device to carry out all the examination steps,” explains Dr. Albrecht Brandenburg, group manager at the IPM. “All the doctor has to do is place the sample in the apparatus and wait for the results.”

Meanwhile, within the device there’s plenty going on: it starts by preparing the blood sample. Red blood cells are separated from the blood and the plasma that remains is guided onto the biochip. When patients are suffering from sepsis, their immune system reacts by producing certain proteins. The biochip uses these in its diagnosis: there are antibodies positioned on the chip which fit these proteins like a key fits a lock. If the proteins are present in the blood, the antibodies fish them out of the fluid and bind them to the chip. But how does the apparatus know if proteins have been caught? “The chip is rinsed with a solution containing the appropriate antibodies, which have in turn been marked with a fluorescent dye,” explains IPM scientist Dr. Manuel Kemmler. “These bind to the proteins – meaning antibodies, protein and marked antibodies are all firmly linked to each other and to the chip’s surface. When the chip is illuminated, the dye lights up.” The apparatus sees lots of little illuminated dots that show the protein was in the blood. If the patient is healthy, however, the chip remains dark.

The researchers can even test for different proteins at the same time in one cycle. This is done by placing various different catcher molecules on the chip, to which specific molecules in the blood attach themselves. A cunning selection of proven protein markers allows the scientists to obtain additional important information about the severity and cause of the illness.

Together with colleagues from a university hospital, the researchers have already successfully tested prototypes of the device and biochip. Each biochip can only be used once – so they have to be affordable. “We predict that in the long run, with production on a large enough scale, each chip will cost no more than one euro,” says Brandenburg. There are various possible applications: other conditions such as heart attacks or cancers can also be investigated this way. What’s more, the chip facilitates doping and urine testing as well as the quality assessment of foodstuffs.

Dr. Albrecht Brandenburg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/recognizing-blood-poisoning-quickly.html

Further reports about: Biochip Sepsis blood cell blood poisoning blood sample red blood cells

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>